“Landscape archaeology itself is based on the idea that we can study past societies through both the large-scale distribution of human activity in space, and through the ways that people interacted with, altered, and perceived their physical environment.”

A. Lauricella, Interim Director of the CAMEL

The study of ancient landscapes and ecology remain integral to the OI’s archaeological and philological research mission. OI researchers make extensive use of satellite imagery, unpiloted aerial vehicles (UAVs), kites, and balloons to survey archaeological sites and landscapes, to map excavations, and to assist in monitoring change to cultural heritage, including looting. Recent technological developments, coupled with sophisticated software, are creating new and vibrant opportunities for scholars to do more with images from the air. The OI’s contributions to the field of landscape archaeology culminated in the founding of the OI’s Center for Ancient Middle Eastern Landscapes (CAMEL) in the 1998 by Tony Wilkinson. The latter’s landmark text *Archaeological Landscapes in the Near East* (2003) defined the modern study of this field for the Middle East. Three core functions guide the endeavors and development of CAMEL: the systematic collection and organization of contemporary and historical spatial data; the application of pioneering avenues of inquiry for investigating this data; and the facilitation of the work of projects and other research seeking to better understand all or part of the Middle Eastern landscape.

Read further about CAMEL and Tony Wilkinson in the contribution of Anthony Lauricella, Interim Director of CAMEL, in the OI’s centennial publication, *Discovering New Pasts: The OI at 100*. Page

Older satellite images are often a valuable window into past landscapes. This image was produced by the Corona satellite, a secret Cold War mission, on August 16, 1968 and shows the Assyrian capital city of Dur Sharrukin (modern Khorsabad). Images such as these not only show us what archaeological sites looked like before urban and agricultural expansion, they also make it easy to identify mudbrick architecture and other evidence of human occupation.

The CAMEL lab maintains an extensive database of high-resolution satellite imagery. This site, called Ai Khanoum, shown in this satellite image (1968), probably Alexandria on the Oxus, was a major Greco-Bactrian city. Today the site has been almost totally looted. Using multispectral data — segments of the light-spectrum invisible to the human eye — recorded by satellites, researchers working in the CAMEL lab developed a method to automate the detection of individual looting pits to quantify the extent of damage.