MESOPOTAMIAN HISTORY AND ENVIRONMENT

Editors:
L. DE MEYER and H. GASCHE

SERIES II
MEMOIRS

Advisory Board:
J.A. Armstrong (Cambridge MA), C. Bonnet (Genève), P. Buringh (Wageningen),
D. Charpin (Paris), M. Civil (Chicago), S.W. Cole (Chicago), McG. Gibson (Chicago),
B. Hrouda (München), J.-L. Huot (Paris), N. Postgate (Cambridge UK), M.-J. Steve (Nice),
M. Tanret (Gent), F. Vallat (Rognes), and K. Van Lerberghe (Leuven)

Communications for the editors should be addressed to:
MESOPOTAMIAN HISTORY AND ENVIRONMENT
University of Ghent
Sint-Pietersplein 6
B-9000 GHENT Belgium
CONTENTS

Preface (L. DE MEYER and M. GIBSON) .. VII

S.W. COLE and H. GASCHE, Second- and First-Millennium BC
Rivers in Northern Babylonia .. 1
 1. Introduction ... 1
 2. The Levee System in Northern Babylonia and its Importance
 for the Reconstruction of the Ancient River Network 4
 3. Archaeological and Textual Evidence for Floods 7
 4. Major Watercourses in the First Half of the Second Millennium 14
 5. The Kassite and Post-Kassite Periods 29
 6. Major Watercourses in the First Half of the First Millennium 30
 7. Conclusion ... 53

M. TANRET, *Le namkarum*. Une étude de cas
dans les textes et sur la carte .. 65
 I. Le mot et son sens ... 65
 II. La localisation des *ugārum* 71
 III. Discussion des références ... 76
 IV. Conclusions .. 119

D. LACAMBRE, Canaux paléo-babyloniens : Le dossier du canal
Úbil-nuhšam dans la province du Yahrum inférieur 133

and the Pallukkatu Channel ... 147
Contents

K. VERHOEVEN, Geomorphological Research in the Mesopotamian Flood Plain

1. Introduction .. 159
2. Geographical Location and Main Physiographic Units of the Lower Mesopotamian Plain 160
3. Changing Rivers .. 187
4. Environmental Change .. 196
5. The Principal Actors: The Twin Rivers 198
6. The Meandering River Flood Plain of the Euphrates and Tigris 203
7. The Study Area and Transect Description 218
8. References ... 240
Preface

This volume presents major new interpretations on the history of watercourses in Babylonia. Building upon the pioneering work of Robert McC. Adams and a follow-up survey of the Kish area by McGuire Gibson, the Belgian Archaeological Expedition to Iraq\(^1\) and the Oriental Institute Nippur Expedition have separately and jointly sought to detail the complex ecology of southern Iraq.

When Adams conducted his initial Akkad Survey, he had no access to air photographs, and the maps that were available, though detailed, were not at a small enough scale to include many of the ancient features. For the Kish Survey, Gibson had the use of the same quality maps, but unlike Adams he did have access to air photographs. When Adams conducted his surveys of the Uruk area and the region east of Nippur, he could at last make use of air photographs, and he could also utilize Landsat images for the first time.

Beginning in the early 1970s, both the Belgian and Oriental Institute expeditions worked closely with geomorphologists and sought to answer complex questions in historical periods through a real cooperation between archaeologists, epigraphers, and natural scientists.

From 1970 on the Belgian Expedition included two geomorphologists, Roland Paepe and Cecile Baeteman, who laid the foundations of geomorphological research in the Sippar region.

The Nippur Expedition enjoyed a collaboration for several years with Stephen Lintner, a riverine geomorphologist. Using a combination of pits, trenches, and the examination of sections of freshly cut drainage ditches, Lintner was able to build up a set of soil profiles for the Holocene in the Nippur area. One of Lintner’s pits was sunk north of the site of Umm al-Ḥafriyat to sample an ancient meander that was clearly visible on air photographs. It was especially through his work that the Expedition became aware of the highly variable and complex factors that have formed the southern Mesopotamian landscape, not the least of which has been wind erosion resulting in dune formation. Subsequently, Margaret Brandt carried out two seasons of soil sampling and field observation of traditional irrigation agriculture around Nippur, and began working out an ecological model that could be applied to ancient times.\(^2\) Later, the Expedition had the occasional collaboration of Tony Wilkinson in examining and interpreting the soils and settlement history around Nippur. Of special importance was an inspection of
Preface

the Third River, the Main Drain being cut east of Nippur. For two days, Wilkinson and members of the Nippur Expedition inspected more than 40 kilometers of the length of this 7-meter-deep trench, encountering evidence of buried sites as well as buried watercourses, both natural and artificial. Wilkinson’s joining the Oriental Institute after 1991 has meant a continuation at Chicago of environmental and settlement-pattern studies for Iraq, utilizing remote sensing techniques. While Chicago and Ghent have been carrying out different, though complementary programs of ecological research, the collaboration that was set up in the 1970s and carried out in the field, in working meetings, and in publication, has clearly benefited both programs.

Members of the Belgian Expedition, for their part, set up an International Geological Correlation Programme (River Flood and Lake Level Changes) in 1975 that was accepted by the UNESCO. At the instigation of Hermann Gasche several Working Groups were initiated for the pilot area that was Iraq — the most important and most difficult one being devoted to the reconstruction of the ancient environment of lower Mesopotamia. These Working Groups, which were co-convened by Ghent and Chicago but included other universities as well, resulted in an exchange of information and ideas that is now resulting in a series of joint publications.

In 1976, Gasche began a detailed stereoscopic mapping of an area comprising approximately 400 000 ha located west and south of Baghdad, between the Twin Rivers. As basic data he used available aerial photographs and corresponding small-scale maps. All visible geomorphological features (especially fossil river meanders and abandoned irrigation networks) and all visible archaeological sites were mapped. Field checks and limited archaeological surveys were also conducted. It is no exaggeration to say that Gasche’s achievement was setting Babylonian historical geography on an entirely new footing.

The Belgian Expedition submitted to the Director-General of Antiquities a first Five-Year-Plan “The Northern Akkad Project” in 1984 and a continuing second in 1989. It aimed at coordinating the activities of four working groups. Dr. Muayyad Said Damerji agreed to the proposed program of research.

The commitment to the development of satellite image interpretation by the University of Ghent, and the purchase of SPOT and Corona images and necessary equipment, has made it possible to relate visible and enhanced traces with geomorphological information gained through laborious borings in the Tell ed-Dér area. In this regard, Kris Verhoeven was able to bring to bear a range of technological tools that were not available to earlier researchers and could not be matched elsewhere for Iraq. He transferred Gasche’s survey data to a computerized geo-corrected map system and stored all related information in a database. He also established that the archaeological sites mapped by Adams that were situated within the 400 000 ha area

VIII
mapped by Gasche had been localized with a good degree of accuracy, especially if one takes into account the fact that Adams did not have access to detailed topographical resources. This is a particularly important point, because it allowed Verhoeven to incorporate into the same map system all the sites mapped by Adams outside of the aforementioned 400,000 ha area — with minor adjustments only.

At this point, however, we were still far from a legible picture of the ancient Mesopotamian river network. We had only the basic frame: nice computerized maps with black dots representing archaeological sites, as well as related geomorphological features representing the relics of ancient natural or artificial watercourses. But few of the former and none of the latter could be identified by their ancient names. Moreover, there was a chronological dimension that was not easy to delimit.

The only way to complete this picture was to exploit and integrate the textual sources. It was because of the close cooperation between Gasche and Steven Cole — the latter having expertise in Babylonian and ancient geography and an exceptional capacity to understand and integrate data not necessarily belonging to his own field — that the completion of the first study of this volume became possible. Their interdisciplinary collaboration was fundamental to the re-identification of the watercourses. Cole is now being utilized by both Ghent and Chicago for this joint project.

The combination of images with “ground-truthing” carried out through surface inspection, archaeological excavation, soil science, and textual investigation has made it possible to present a truly innovative and persuasive map of the ancient watercourses in northern Babylonia. Similar research conducted at and around Nippur, and continued at Chicago with the same kind of satellite imagery, will be linked in future to the continuing research at Ghent. We present this book with the conviction that with it we are entering upon an improved geography for Babylonia. It must, necessarily, cause us to adjust our mental maps and read texts with a different set of possibilities and probabilities in mind.

In his contribution on the namkarums Michel Tanret has undertaken a novel approach to the textual material. Focusing on a corpus limited in time to the OB period and in place to the Sippar region his aim was to extract as much geographical information as possible from the cuneiform tablets centering his research on one element of the ancient fluviatile system. Thanks to the textual, geographical, and prosopographical databases elaborated in Ghent he succeeded in extracting much more information than was expected. The approximate localization of the Irmina and the Euphrates by Cole and Gasche (in this volume) allowed him to make the first geographical classification ever of the ugârums, the watering districts. Within many of these he could then establish the presence of one namkarum. The next step, linking these findings to actual structures identifiable on areal and satellite photographs is new
Preface

too. Although a one-to-one correspondence between the namkarums in the texts and in the landscape is not yet realizable, this approach opens up a whole new field of research, including cadastral reconstruction deemed impossible until now.

Denis Lacambre’s, and Tom Boiy’s and Kris Verhoeven’s articles both deal with the location of specific canals, i.e. the Úbil-nuḥšam Canal and the Pallukkatu in Seleucid times.

Finally, the volume ends with a lengthy excursus by Kris Verhoeven who presents a geomorphologist’s perspective of Lower Mesopotamia, especially the Euphrates-Tigris flood plain, and who also sets forth data he collected in 1988-1990 in the course of a geomorphological reconnaissance survey of the immediate surroundings of the archaeological sites of Tell ed-Dēr, Abū Ḥabbah (Sippar), and Abū Qubûr. His article demonstrates the disharmony that currently prevails among paleoclimatologists, whose data concerning Mesopotamia are imprecise, lack congruity, and stem from distant regions. However, the archaeological and documentary data set forth by Cole and Gasche, which can be interpreted as being in agreement with some of these climatic data, yield additional information. This information, because it stems from the Mesopotamian flood plain itself, will perhaps lead paleoclimatologists to reconsider some of their conclusions concerning the first half of the second millennium.

We are sincerely grateful to the Belgian Government, and especially to the Ministers of Scientific Policy, for having approved and subsidized since 1990 an Interuniversity Pole of Attraction “The Land of Sumer and Akkad: Reconstruction of its Environment and History.”

We also express our thanks to Gene Gragg, Director of the Oriental Institute, for his interest and enthusiasm for the joint project and publications.

Léon De Meyer and McGuire Gibson

1 Financed by the Ministers of Education.
3 Some of the Progress Reports were published in Tell ed-Dēr 2 (1978) and 3 (1980).
6 Within the framework of the Interuniversity Pole of Attraction Program IV/25.
1. INTRODUCTION

After more than fifty years of survey investigation, there is still no satisfactory picture of the network of rivers and main canals which coursed across the lower

1 We use the term Northern Babylonia to refer to the region delimited by the modern Tigris on the east, the Euphrates on the west, approximately a line between Ramadi and Sāmarrā on the north, and a latitude not far from Babylon on the south. Two summaries of this study will be published elsewhere, one covering the area between Sippar and Babylon and the other dealing with the region between Fallūğāh and Sippar. The former will appear in the proceedings of a colloquium held by the Deutsche Orient-Gesellschaft in Berlin, while the latter will appear in a Festschrift volume.

Here we wish to express our heartfelt thanks to M. Civil, who kindly helped us with the interpretation of crucial passages in Sumerian, and to J.A. Brinkman, for numerous critical comments and insightful suggestions. We also express deep gratitude to L. De Meyer and M. Tanret for freely sharing with us information gleaned from published and unpublished documents from Abū Ḥabbah and Tell ed-Dēr. Finally, we wish to address a special word of thanks to J. Renger, who invited us to speak on this topic at the meeting of the DOG in Berlin and thereby compelled us to accelerate the final stages of our research. New data have been discovered since that occasion, however, and therefore the reader should take note that there are several differences between the results that are set forth in the present study and those that will be found in the two summaries mentioned above, especially in regard to the question of the junction between the Euphrates and the Tigris at the approximate latitude of Seleucia.

* Oriental Institute of the University of Chicago.
** University of Ghent.

Virtually all the sites visited and mapped in the different surveys were dated by means of sherds collected from their surfaces. Certain inevitable pitfalls attend the use of this method: a) more than one site has yielded, upon later excavation, remains from periods which were not represented by the material on the surface; and conversely (although less frequently), prospections have encountered material on the surfaces of sites which dated to periods for which there were no related remains in the stratigraphy subsequently revealed; b) the diagnostic sherds utilized in the extensive surveys of
Mesopotamian plain in antiquity. But the problems entailed in the reconstruction of this picture are immensely complicated. It is no longer adequate to draw a line between two settlements because the textual sources situate them on the same watercourse, nor is it any longer sufficient to reconstruct watercourses by connecting sites which supposedly belong to the same epoch. This innocent approach ignores one of the major elements in the picture — the geomorphology of the plain, the principal components of which were set forth nearly forty years ago by BURINGH (1960). Only by taking into account all the data at our disposal, which requires the close cooperation of archaeologists, geomorphologists, and philologists alike, can we hope to unravel all the complexities involved and start to build a coherent image of this system through time.

Adams and of Adams and Nissen are not always characteristic of the periods which they are supposed to represent. On this problem as it relates to the pre-Uruk and post-Hellenistic material, see the remarks of GEYER and SANLAVILLE (1996, 400). The same objection can be raised for the Old Babylonian period (as already noticed by BRINKMAN 1984, 171), while the Ur III and Isin-Larsa material, if considered together, is more reliable. Nevertheless, the objective of the present inquiry could not have been accomplished without the results of these important surveys. Without them we would not have been able to utter even the first stammering remarks about the topic at hand, the complexity of which is yet to be fully appreciated.

Other major factors contributing to the evolution of the Mesopotamian floodplain include climatic changes, isostatic and tectonic movements, eustatic variations in sea level, and human intervention. Climatic variations have essentially affected the dynamic of the rivers by augmenting or diminishing their discharge and sediment load (but as we will see later, this evidence cannot be used by itself to reconstruct the hydrological situation of this region). Tectonic activity has had a greater impact on the eastern side of the Gulf and on the piedmont of the Zagros, where the Arabian plate plunges beneath the Eurasian plate, than it has had on the Mesopotamian floodplain itself. For recent activity in one of the areas where these two plates collide (specifically at the 'Shaur anticline' [Hüzistan]), see LEES and FALCON 1952, 33-34, and SANLAVILLE 1989, 11; but see also LARSEN 1975, 52. Although little information is available for tectonics on the floodplain itself, it is notable that the meanders which were identified atop the fossil levee running from Abū Habbah to Tell ed-Dīr as well as those found on fossil levees north and south of this line (see Maps 1 and 4) all gently sloped within the same plane, in the way that water would flow. Therefore, in this region at least, there is no direct evidence of tectonic disturbance since the formation of these meanders (nor is there evidence of subsidence; see also GEYER and SANLAVILLE 1996, 401 for the southern part of the plain in a much earlier period). Finally, it should be pointed out that eustacy has not directly affected the northern part of the floodplain during the period with which we are concerned.

It should be noted that our summary of the geomorphology of the Mesopotamian floodplain that is presented below is written with the non-specialist in mind and therefore has been greatly simplified. For a more detailed development of the area with which we are concerned, see the contribution of K. Verhoeven in this volume.

It is in this spirit that we intend to approach the problem of the ancient fluviatile network of lower Mesopotamia. Our initial effort has intentionally focused on the northern part of the plain during two periods of its history: the first half of the second millennium BC \(^5\) and the first half of the first millennium (especially 750-500). The reasons for these choices are the following:

1) Thanks to precise topographical documentation and recent aerial and satellite imagery, the relief of the northern plain with all the ancient vestiges on it has now been mapped in detail, improving on the work of ADAMS (1972). It should be noted that within the frame delimiting our research, the network of the Tigris and Diyala rivers east of the modern bed of the former \(^6\) has not yet been sufficiently investigated to allow an elucidation at the present time.\(^7\) Nevertheless it is clear that in antiquity the Tigris, which at this latitude is lower than the Euphrates, played a less important role than the latter in irrigating the region which lies at the heart of this investigation.\(^8\)

2) The periods chosen have both yielded abundant textual information from and about the region concerned. Also, from an archaeological perspective, the Belgian excavations at Tell ed-Der, Abū Ḫabbah, and Abū Qubūr-North (first half of the second millennium) and the Belgian-British excavations at Ḥabl as-Ṣaḥr (Neo-Babylonian) all produced evidence relative to the paleo-environment, including flood deposits embedded in archaeological contexts and the remains of works meant to protect certain of these sites against the periodic onslaught of the same.

The reconstruction presented in this paper represents only a small part of the river network which irrigated Akkad and Sumer during the periods under consideration. Nevertheless, the region of focus is the critical zone of departure of the various branches of the Euphrates which irrigated the regions further south. We will not yet consider the intermediate Kassite and early first-millennium systems because we do not yet have

\(^6\) Especially the ancient Durul (= Turan/Turnat) and Ṭaban systems. For a recent reconstruction of the ancient Tigris channels in the area between Sāmārrā and about 30 km north of Baghdad from c. 8000 BC on, see Wilkinson 1990a.

\(^7\) However, we will discuss the probability that the course of the ancient Tigris corresponded more or less with the modern bed of the river from Baghdad to some distance south of Seleucia.

One should note that the alluvial fans of the Adhaim and especially the Diyala have played an important role in the evolution of the Tigris to the north, to the east, and, by inference, to the southeast of Baghdad. But the different stages in this evolution have not yet been sufficiently established to allow their full development here.

\(^8\) Because of the general west-east slope of the plain and because of the deeply incised channel of the Tigris, water-lifting devices would have been necessary (as they are today) to elevate its water onto the lands adjoining its banks.
enough solid, relevant evidence from these periods. They have yielded much less documentation than the preceding and succeeding periods, and, from an archaeological point of view (to cite one problem only), the collection of Old Babylonian diagnostic sherds used by Adams in his Akkad Survey includes later material as well. It is therefore difficult (if not impossible) at present to establish a distinctive picture of the river networks of these periods. Finally, we should point out that the available data allow a reconstruction of only the general frame of this network. The localization, for example, of major canals known to have been built by many of Babylonia’s rulers is still a task which requires further archaeological, geomorphological, and documentary investigation. But once the natural river system has been established it will be easier to integrate the canals into the scheme that is developed.

2. THE LEVEE SYSTEM IN NORTHERN BABYLONIA AND ITS IMPORTANCE FOR THE RECONSTRUCTION OF THE ANCIENT RIVER NETWORK

The Mesopotamian floodplain, broadly speaking, is the central part of an extensive geosyncline, the bottom of which is filled with older shelf sediments, with later erosional products having been deposited on top of them (BURINGH 1960, 38). It is primarily in the upper part of these erosional products that the fluviatile networks with which we are concerned evolved.

From north to south on the plain one can distinguish three zones:

1) the Floodplain (from Sāmarrā/Ramādi to Amara/Nāṣiriyah), the northern part of which (roughly from Sāmarrā/Ramādi to Kūṭ/Ḥilla) is covered in large measure by the present investigation,

2) the Marsh Zone (from Amara/Nāṣiriyah to Baṣrah), and

3) the Estuarian Zone (from Baṣrah to the shore of the Gulf), with zones 2 and 3 being confined between the vast gravel cone of the Wāḍī Bāṭīn on the southwest and the fluviatile deposits of the Karūn and Kerḥa on the northeast.

To the west of the plain lies the Western Plateau, which consists mainly of different kinds of limestone formed on the old shelf, the thickness of these layers being

9 Such evidence might eventually explain the dramatic differences which we can see between the system of the first half of the second millennium BC and the one which is in evidence after 750 BC.

10 This is also why on Map 8 we do not show the sites whose first occupation is dated by Adams (1972) to the Old Babylonian period.

11 The northern part of this zone is characterized by a more meandering river system than the southern part (that is, from Kūṭ/Ḥilla to Amara/Nāṣiriyah). For a fuller treatment of this topic, see K. Verhoeven in this volume. See also SANLAVILLE 1989, 7-10 (but the reader should note that his ‘Alluvial Plain’ and ‘Deltaic Plain’ together correspond to our ‘Floodplain’).
Second- and First-Millennium BC Rivers in Northern Babylonia

up to eight kilometers. The Ġazîrah, which is also higher than the plain (apart from the central Tarţâr depression), forms the northern border, and contrary to its meaning ‘island,’ it encompasses vestiges of an old inland sea in which mainly gypsum has been deposited (BURINGH 1960, 37). To the east, finally, the plain abuts the large irrigation fan of the Diyala and, to the southeast of it, the fan deposits of the Piedmont.

Near Fallūqah the Euphrates finally emerges from its valley which it has incised between the Western Plateau and the Ġazîrah. A river’s natural tendency when emerging from such a valley is to spread out radially in multiple branches over the open plain which lies before it. This is probably what occurred after each Ice Age glaciation when the Euphrates discharged massive amounts of gravelly sediments in an alluvial cone fanning out from the end of its valley. Remnants of this topographical feature include the large Fallūqah Terrace and perhaps also the smaller outcrops just to the south and southeast of it. Despite the fact that the Euphrates no longer discharges its flow in a radial pattern in this region today, the geomorphological features which reflect the ancient drainage pattern show that this distribution system existed in historical times (see Map 2).

The Levee System Between the Twin Rivers in Northern Babylonia (Map 1)

All floodplains exhibit the same dynamics. Provided that the velocity of a river is sufficient, it will flow forward along a line that is more or less straight. But when it can no longer surmount the many and various obstacles opposing its movement, it skirts the barriers, and thus forms meanders. Its course then lengthens as its slope diminishes. The current then no longer passes along the center line of the channel but strikes instead against the concave bank of each curve and underwashes it. The river deposits its sediments on the opposite bank, where the velocity is weaker. Meanders therefore shift constantly. Often two neighboring loops end up joining each other, whereupon the water rushes through the breach, and the old bed, now abandoned, becomes a dead channel. The large loop south of Seleucia that was abandoned by the Tigris clearly illustrates this phenomenon (see Fig. 1).

12 Its alluvium actually begins about 80 km upstream, south of Hit, where the gradient of its flow is already very slight, falling only about ten centimeters per kilometer. According to BURINGH (1960, 49, Fig. 19), the course of the Euphrates through Iraq exhibits the following gradients: 30 cm/km between ‘Ànâ and Hit; approximately 10 cm/km between Hit and Šanaflîyah; 3 cm/km between Šanaflîyah and Nûşîriyâh; and finally 1.5 cm/km between Nûşîriyâh and the Gulf.

13 The Iskandarîyah Terrace, located south of Sippar, could also be a remnant of such a feature but this has not yet been definitively established. All these features, including the Ġazîrah, are shown in gray on our maps.

14 For a schematic illustration of the way in which meanders form and shift, see JUDSON and KAUFFMAN 1990, 294, Fig. 13.33.
Of more pertinent interest here, however, are the long, slightly swelling features which mark the relief throughout the plain (see Maps 1 and 2). They are scarcely visible to the naked eye (if visible at all), because they are several kilometers in width and rarely exceed four meters in height. They traverse the plain in different directions, and certain of them exhibit on their summits large crescent-shaped features, which when viewed from above are characterized by concentric, bending stripes (Fig. 2). BAETEMAN (1980, 18-20) made augerings in the one southeast of Tell ed-Dér and determined that it was a point-bar deposit which had formed on the inside (or convex side) of a meander. Therefore, these reliefs with fossil river traces on their summits are levees formed by ancient branches of the Euphrates.\(^{15}\)

The process by which these structures are formed is well known and can be summarized in the following manner. With each inundation\(^{16}\) the terrain close to the channel receives most of the sediment load, with the rest being transported to more distant areas. The perennial rhythm of seasonal inundations occasions a continuous heightening of the river’s approaches, with the water flowing more and more on its own alluvial material. Finally the river channel is elevated well above the plain, with basins forming progressively on either side. The practice of irrigation along fluviatile arteries — where the most favorable soils for agriculture are encountered — has also significantly contributed to their construction.\(^{17}\)

Whatever the rhythm or causes of this heightening may be, the river ends up flowing some meters above the level of the plain. During a particularly violent flood,

\(^{15}\) Only those meanders for which adequate documentation is available can be mapped. This is true for the levees located just north and south of Abū Habbah. But not all the levees exhibit paleo-fluvial features, either because they were not formed by natural river channels or the traces have been buried by sediments from subsequent intensive irrigation activity. This situation alone demonstrates the complexity involved in reconstructing the old river system of Babylonia. These meanders are evidently connected with a course from the most recent phase of the fluvial channel which formed them.

\(^{16}\) Before the advent of modern projects to control flood discharge, such inundations could occur "almost every 3 or 4 years" (BURINGH 1960, 52). VAUMAS (1962, 241) noted that the Tigris burst its dikes ten times upstream from Baghdad and eight times downstream between 1944 and 1954. He also remarked on the consequences of large floods, such as that of 1954, when the magnitude of the river’s discharge was estimated to have been more than five times greater than that under average flood conditions (ibid., 240-242). It was only after 1956 that Baghdad and the rest of the plain was theoretically shielded from this scourge, because from that time forth the floodwaters of the Tigris could be diverted into the Wādī Țartar depression and those of the Euphrates into the depressions of Habbâniyyah and Abū Dibbis.

\(^{17}\) The silt burden of the Twin Rivers, of which a large portion is deposited on the plain by irrigation, is impressive (see, for example, LEES and FALCON 1952, 29, citing M.G. Ionides; SCHILSTRA 1962). The rate of sedimentation is also appreciable along the secondary canals that tapped their water from the main channel (see Figs. 3 and 4, which illustrate the impressive size that secondary canals can exhibit). These appendages of the main levees are very visible on our Map 4, especially along the canals in the area of Tell ed-Dér (note also their characteristic ‘wheat-ear’ arrangement).
the river can abandon its channel and recommence, now in a basin, the process which we have just described. But this phenomenon must have occurred only rarely in the part of the plain with which we are concerned, because the main levees here were built up incrementally over millennia.18

The above-described process applies to all levees reconnoitered in the project area. In general, one can readily distinguish between levees constructed by natural watercourses and those built up by the more important irrigation canals. The following two sectors, however, are exceptions:

1) the region just south and east of the Fallūghah Terrace, where traces of older river channels are mostly buried under sediments deposited in the course of the intense irrigation practiced here after the foundation of Baghdad by the Abbasids, and

2) the ‘valley’ between the Fallūghah Terrace and the Ġazīrah, where the modern topography largely obscures the older relief (perhaps because eolian deposits from the Ġazīrah and the Fallūghah Terrace have played a major role here, but the area still requires detailed geomorphological and archaeological investigation).

3. ARCHAEOLOGICAL AND TEXTUAL EVIDENCE FOR FLOODS

The First Half of the Second Millennium

In one of the deeper levels of Chantier A at Tell ed-Dēr,19 a deposit in which water played a dominant role abutted against a possible protective work. Because only a small surface of this structure was exposed, and because its size cannot be compared with that of the dike surrounding the site, it is mentioned here only to note its existence. However, there is other, more certain, evidence of serious flooding during the first half of the second millennium BC, especially from the reign of Hammurabi on. This evidence will now be summarized.

Hammurabi encountered serious floods during his reign. The formula for his 43rd year (1654 BC) informs us that he heaped up a great volume of earth around Sippar (Abū Ḥabbah).20 His work can be identified with the lower elements of the massive embankment that protects the site. Excavations revealed this embankment to be

18 For example, the levee between Abū Ḥabbah and Tell ed-Dēr grew about 1.5 m during approximately the third millennium alone (Gasch 1988, 42).
19 Phase IIIa (Ur III); cf. Gasch 1984, 7-9, 16.
20 Ugnad 1938, 182; Horsnell 1974, 276-280. The building of this structure was also commemorated in an inscription (see Frayne 1990, 348-349).
a dike, the construction of which commenced around the reign of the great king.21 Shortly thereafter, but already during the reign of his son, a dike was also constructed around the neighboring city of Sippar-Amnānum (Tell ed-Dēr).22 As at Sippar, the oldest elements of this construction rested directly atop alluvial deposits, thus illustrating the reason for its inception and completion. Also at Tell ed-Dēr, but around 1580, a flood destroyed part of the house of Lamassānī, the daughter of a priest of Annunitum.23 This flood was preceded some one to four decades earlier by an inundation during the reign of Abi-ešuḥ requiring the mobilization of all the landholders in the Sippar region to reinforce the banks of the Irnina and the Purattum, because, the king’s order declared, floodwaters had risen to the level of the quay-walls.24

Abū Qubūr-North also revealed significant fluviatile deposits, between probable Ur III remains and those of Isin-Larsa date, as well as above the installations dating to this latter time.25 At Nippur, a deposit showing an internal structure similar to that of the dikes around Tell ed-Dēr and Abū Ḥabbah was uncovered above the Ur III city-wall but below remains of the Kassite period.26

Although little importance has been attached to one of the trenches opened by the Germans through the city-wall of Uruk, it nevertheless merits reflection. The published section of it27 shows an accumulation of earthen layers more than 5 m thick, the two slopes of which are symmetrically eroded. According to the excavator, this earthen

21 GASCHE and PÆPE 1980, 51: its attribution to the “second half of the Paleo-Babylonian Period for the D(ike) 2 system” was made on the basis of the archaeological evidence alone.

22 A letter from Samsuiluna informs us that a traditional enceinte of brick existed at Sippar-Amnānum during his reign (FRANKENA 1966, No. 77). We have proposed elsewhere to identify this enceinte with the wall that was uncovered beneath the peripheral dike, because the nature of its construction and the date of the archaeological finds support this hypothesis (GASCHE 1989, 140-141). The sediments encountered in the course of the excavations show that this structure was destroyed by inundations (PÆPE et al. 1978, 15, 22, and Plan 1) and that it was replaced first by a relatively modest earthwork (ibid., Plan 1, D 20), and then by at least three successive earthworks of massive proportions (D 21, 22, and 23, with a width of up to 50 m). Each of these structures — including the first — exhibited all the characteristics of a dike. The same succession of features can be reconstructed at Sippar, where SCHEIL (1902, 13) found a mud-brick structure below the presently visible peripheral embankment (see also De MEYER and GASCHE 1980, 26).

23 JANSSSEN et al. 1994; see in particular pp. 110-111 for an emendation of the chronostratigraphy, which initially had been interpreted differently (GASCHE 1989, 7). The house of Lamassānī was located on the northeast periphery of the town, the only side not entirely protected by the peripheral dike, because the accumulation of occupational debris upon which the house was built must have been judged to be sufficiently high to offer protection against floods. This shows that the inundation which ravaged part of the house of Lamassānī must have been one of unusual magnitude.

24 FRANKENA 1966, No. 70.

25 DE MEYER and GASCHE 1986, 10-23.

26 GIBSON et al. 1983, 177.

27 HALLER 1936, Pl. 12c.
body sits on top of remains dating to the Isin-Larsa period, meaning that the earthen layers belong to a later period. If that period should eventually prove to be Old Babylonian, then the earthen layers in question would be roughly contemporaneous with the dikes around Abū Ḥabbah and Tell ed-Dēr. Even if definitive conclusions about the function and date of this structure are precluded, it certainly merits closer scrutiny, because it presents the very same characteristics as the dikes identified around the two Sippars.²⁸

There is also evidence of dike-building activity at Mari²⁹ and of serious flooding in the town and its surrounding region. Some twenty-five undated letters to Zimri-Lîm, Hammurabi’s contemporary, report heavy rains and high floods in both the Euphrates and its largest tributary, the Ḥabûr, with all the attending damage one would expect from such events. They report, for example, that the dikes of the region were reinforced from top-to-bottom with bitumen in anticipation that the rivers would flood after two heavy rains,³⁰ that the wadis near Mari filled with floodwaters and inundated fields near the palace,³¹ and that other wadi floods caused breaks in barrages built of stone, damaged a bridge, and destroyed canal works, necessitating a levy of more than 2000 men to repair them.³² They also mention a high flood in the Ḥabûr that prompted an urgent call for reinforcements at Terqa to attend to the barrages, over the top of which water was said to have been continually pouring.³³ They report that the Ḥabûr rose to a height of 2 m above flood stage, and that after it had broken through the dikes and inundated the surrounding countryside, the entire labor force had to be engaged to shore up the banks, and still more men were needed.³⁴ Finally, we learn that a flood of the Ḥabûr caused 21 m of the outer wall of the citadel of Saggarûtam to collapse, necessitating yet another appeal for able-bodied men, this time to repair damage to the palaces at Saggarûtam and Dûr-Yaḥdun-Lîm.³⁵ These troubles may have begun before Zimri-Lîm ascended the throne of Mari, as evidenced by the name given to one of his first years of reign: ‘The year in which Zimri-Lîm put in order the bank of the Euphrates.’³⁶

²⁸ One should note, however, that this is the only sector of Uruk’s enceinte which has revealed this type of structure. On the other hand, not all the relevant sectors were investigated, nor did a protective dike necessarily have to follow the line of the ancient city-wall, especially one which delimited an area over five times greater than that which the dike of Sippar enclosed.

²⁹ For the archaeological evidence, see MARGUIERON 1998, 3.

³⁰ DOSSIN et al. 1964, Nos. 27-28.

³¹ KUPPER 1954, Nos. 2-3.

³² KUPPER 1954, Nos. 1, 4-5, and 7.

³³ KUPPER 1950, Nos. 2 and 7.

³⁴ BIROT 1974, No. 13; see also KUPPER 1954, Nos. 8-9.

³⁵ JEAN 1950, No. 101.

³⁶ ZL 1' = šanat Zimri-Lîm aḫ Purattim uṣîtēṣeru (DOSSIN 1950a, 58 No. 29). On the order of Zimri-Lîm’s
The evidence presented above invites the conclusion that the first half of the second millennium was characterized by higher than average precipitation and runoff in the catchment of the Twin Rivers. To confuse the picture, however, several letters from this period show that important watercourses in both Babylonia and the Middle Euphrates were choked by silt and vegetation, a strong indication that the water level in these channels was low and their flow sluggish. Hammurabi, for example, sent instructions to Sîn-iddinam to remove the silt and vegetation from the bed of the Euphrates between Larsa and Ur and to put its channel in order. In another letter from the king, this time to Šamaš-ḫāzīr, it is even implied that the channel between these cities was dry on at least one occasion. It is also reported that water could not pass along the channel through Uruk because it had not been dredged. Finally, a letter from Mari indicates that reed beds were clogging one of the main canals of the region and they therefore had to be burned.

All this evidence considered together presents an apparently contradictory picture of the hydrological situation in Mesopotamia. On the one hand we have too much water, and on the other not enough.

The path to resolution can be found in the implications of paleoclimatic data from Lake Van and the Gulf, even though these bodies of water are far removed from the region with which we are concerned. Evidence from annual layers of sediments in Lake Van, the climate of which is thought to be representative of the Tigris-Euphrates catchment area, allowed BUTZER (1995) to reconstruct flood levels in this system. He used this proxy data to demonstrate “low water volumes” from just before 3000 to about 1500 BC. A similar conclusion had already been reached by NÜTZEL (1975), who argued for moderate discharge in this system for the period between 3000 and 500

...
Second- and First-Millennium BC Rivers in Northern Babylonia

Second- and First-Millennium BC Rivers in Northern Babylonia

BC based on the relatively high content of organic material in the sediments that form the floor of the Gulf where Iranian rivers flow into it from the southern Zagros.43

Turning back then to the hydrological situation in Mesopotamia, it is possible to bring the entire set of data into agreement. Low water in a river leads to the siltation of its bed and the constriction of its channel. When this happens, the river can no longer flow with enough force to scour its bed until the arrival of the annual spring runoff, when the combination of a filled-up bed and a sudden increase in water volume can spell disaster. It is because each of these circumstances was present that damaging floods, sluggish channels, and dike-building activities are all attested within the same period of time.

Evidence for Flood Control Systems

A palliative but certainly inadequate technique of flood control that was practiced even until recently involved voluntarily breaching a river’s dikes or opening canals pointing toward basins when floodwaters rose to a level sufficient to sound the alarm. The water would then rush into the lower areas in a direction that was more or less controlled, diminishing the potential for disaster if the flood was not of exceptional magnitude. A letter from Hammurabi to Šamaš-ḫāzīr shows that the technique was used in his time. The king wrote: “The river flows strongly here. The water is high. Open canals pointing in the direction of the marshes and fill the morass around Larsa.” 44

Samsuiluna conceived a plan to remedy, once and for all, the plague of seasonal flooding. A curious date formula commemorating his 26th year of reign records that he “made a cleft 11 m deep 45 in the stone barrier of the great mountain of Amurru; he dug the tail of the canal ‘Samsuiluna-is-the-Source-of-Abundance’ from (or in) a swamp, connecting it with..., which caused a wide expanse of land to appear, thus extending the cultivated area of Babylon and establishing...” 46

43 The investigation of these sediments was conducted in 1964-65 by a team aboard the German research ship ‘Meteor.’ The relatively high proportion of organic material in these sediments points to both a moderate amount of water in their channels and a moderate amount of precipitation in their catchment areas between 3000 and 500 BC. It also points to a relatively dry climate over this period.

On the basis of the same results, KAY and JOHNSON (1981, 259) conclude that “The southern Zagros experienced a change from humid to arid climate c. 5900 BP, and remained arid until c. 3000 BP.” Despite the fact that Kay and Johnson show little enthusiasm for Nützel’s conclusions, the ‘arid periods’ of both Nützel and Kay and Johnson include the first half of the second millennium BC, the period with which we are presently dealing.

44 KRAUS 1968, No. 85. See also VAN SOLDT 1994, No. 5 (Hammurabi to Sin-iddinam of Larsa).

45 1 1/2 ninda 4 kūš (= 22 cubits).

46 UNGNAD 1938, 184 No. 171 (numbered ‘27’ instead of ‘26’). The full text reads: mu sa-am-su-i-lu-na lugal-e ṣur-sag-gal kur.mar-tu.ki-a l-1/2 ninda 4 kūš būru-da-bi na₄ sag-gi-a-
The only place where Samsuiluna’s project could have been realized is the stone barrier which separates the Ḥabbānīyah and Abū Dibbiṣ depressions (see Maps 1 and 8). According to the topography, the depth of the cut needed to connect the two depressions is about 11 m, if the lake of Ḥabbānīyah is filled to an elevation of approximately 45 m. This ambitious project, which was both perfectly realistic and technically achievable for the time, would have allowed the Abū Dibbiṣ depression to receive more than four billion m3 of water, of which, however, three billion would have evaporated each year. Such a scheme, if completed, would have accomplished the following objectives:

1) it would have prevented Euphrates floods in Babylonia (although the Tigris would have remained a problem for the eastern part of the floodplain); and

2) it would have created a substantial reservoir for the irrigation of the plain between Babylon and the edge of the Western Plateau during the drier months of the year (in effect, as soon as the water of Abū Dibbiṣ reached an elevation of about 27 m it could have been utilized to irrigate the above-mentioned plain, because northwest of Karbalā there is a depression at this elevation on the edge of the Western Plateau [see Maps 1 and 8]).

Unfortunately we were unable to establish if there was any trace of an ancient cut of the ridge before the modern one (the so-called Muğarrah Canal) was made, nor is

47 It is clear that ‘mountain of Amurru’ in this context refers to hills in the desert directly west of Babylonia proper rather than in Syria (e.g. KUPPER 1957, 178-179), since the date formula explicitly states that the cultivated area of Babylon was the target of his intended benefaction. Just west of the lake of Abū Dibbiṣ there are summits rising up to 100 m above the level of the Euphrates.

48 As WilcockS (1917, 15) has already shown, the first point at which the water of the Euphrates can leave the valley is near Ramādī, where three openings in the desert (see our Map 1) could allow the river in flood to be easily directed into the Ḥabbānīyah lake. But the capacity of the latter is not sufficient to receive the outflow of several severe floods in succession, which is why he recommended connecting it with the Abū Dibbiṣ depression to the south. This project was finally accomplished and has been integrated recently into a new, even more sophisticated water-regulating system.

49 To be completely effective, this project would have necessitated the construction of a small barrage-regulator at the outlet of the Ḥabbānīyah lake, a task which would have confronted the builders of that age with no particular technical difficulties.

50 WilcockS 1917, 15.

51 It must be recalled here that the terrain which is susceptible to Tigris inundations represents a surface area that is appreciably less important than that which can be affected by floods of the Euphrates system. See, for example, the map published by Buringh (1960, Fig. 20), who shows the extent of the terrain inundated by the Tigris as a consequence of the huge flood of 1954.
there any mention of such a cut in the report of Willcocks.52 One wonders therefore if Samsuiluna in fact realized his objective or if he abandoned the project after having completed only an initial phase of the work.53

\textbf{The First Half of the First Millennium}

Evidence uncovered during the excavations at Ḥabl aṣ-Ṣaḥr, on the so-called Wall of Media,54 permit us to conclude that flow in the Euphrates channel which ran parallel to the wall was artificially controlled in the Neo-Babylonian period and that Nebuchadnezzar II could have utilized a portion of its water to maintain a marshy area in the basin located to the north of this advance defense of Babylon.55 The existence of a large, permanent morass in the region of Borsippa56 suggests that the bulk of Euphrates flow was now coursing along more westerly channels in the system. High water seems to have been a problem during this period, as evidenced by Nebuchadnezzar’s statement that he had to rebuild the palace at Babylon because high

52 WILLCOCKS 1917, 15-16, and PL 26; see however the allusion on p. 15 to a “thick belt of Euphrates shells at R.L. 25.00 metres showing that in ancient times it was filled with escape water from the Euphrates.” On the general map found on PL 1, Willcocks indicates a rather precise course for this outflow, which, however, is untenable from a topographical point of view. There is also no trace of it in the presently available topographical and aerial documentation.

It cannot be precluded that Samsuiluna constructed an underground connection between the two depressions — a qanat-like structure for example — but no such remains were noticed by Willcocks, either because they were no longer visible or because he did not specifically look for them. The wording of year formula 26 does not exclude such an interpretation.

53 In light of the date formula for Samsuiluna’s 26th year, that of his 3rd year would seem to commemorate the first phase of this project — the construction of an escape canal from the right bank of the Euphrates near Ramādi into the Ḥabbāniyah depression. This formula records that Samsuiluna “dug the canal ‘Samsuiluna(-the-King)-is-the-Source-of-Abundance’ in a territory neglected since days of yore, which caused an expansive cultivated area to appear in the middle of the country...” (revised translation of HÖRNELL 1974, 294-300). This canal could have used one of the three openings in the desert which allow the water of the Euphrates to be directed into the Ḥabbāniyah depression (see WILLCOCKS 1917, PL 26; and for a simplified drawing, see our Map 1). In fact, it is even possible that one of the branches of the old Aziziya Canal system (which passed through the same opening as the much more recent escape shown on our Maps 1 and 8) was a remote echo of Samsuiluna’s work. For a detailed map of this area, see WILLCOCKS 1917, PL 26, and MOBERLY 1927, Map 34. (We thank J. Reade for bringing the last-mentioned item to our attention.)

54 BLACK \textit{et al}. 1987; GASCHE 1989a.

We will see below that during the first half of the second millennium BC — within the geographical frame of the present project — the Tigris very likely followed much the same course as it does today. Because there is no evidence to indicate that its situation was any different in the Neo-Babylonian period, we will have to reconsider the western extension of the Wall of Media in order to harmonize its length as observed in the field with the length attested in the written sources (see BLACK \textit{et al}. 1987, 15-21). But this is not a concern of the present study, and neither are the implications for the location of Opis/Aksak.

55 GASCHE 1988, 43.

56 COLE 1994.
water had weakened its mud-brick foundations.57 Moreover, he appears to have elevated the whole center of the city by up to five meters.58

4. MAJOR WATERCOURSES IN THE FIRST HALF OF THE SECOND MILLENNIUM

We noted above that the main levees were built up over very long periods of time by the branching network of the Euphrates. As soon as this process commenced, the levee network became the abiding conduit of the water supply. Even if a river shifted its channel for some reason, the relief remained, and man was compelled either to refurbish the old bed or to replace it by a canal which could then take advantage of the existing topography, of which the levee system was a permanent component.59 In the latter case, the replacement canal did not necessarily have to run along the very top of its levee, but rather could have flowed at some distance from its axis, depending primarily upon the level of the water in the river from which the canal tapped its water. Over a long period of time such a displacement from the central axis would have occasioned a widening of that length of the levee along which it coursed, which is why certain fossil meanders and alignments of sites are found at some distance from levee summits proper.

Map 1 covers the region between Ramādi and Babylon and shows the levee system with its characteristic micro-relief. Map 2 shows the drainage pattern of this area. Map 3 shows the same relief as Maps 1 and 2, but to it have been added all the archaeological sites actually known, regardless of their period of occupation. Their spatial distribution shows that a great number lie directly on the center part of the main levees while most of the others, located at some distance, are on appendages of the main levees (like those radiating from the Abū Ḥabbah/Tell ed-Der levee on Map 4). The general distribution pattern demonstrates the perenniality of the basic system, especially in light of the fact that all periods of occupation from Ubaid to Islamic are covered.

Now that we have established the physical picture of the river network, our next task will be to examine the textual information to determine if it allows us to put labels on the various branches. Administrative documents, building inscriptions, and year names all provide information about the river network during the periods in question, but in our opinion the everyday documents supply the most pertinent and realistic

57 Langdon 1912, 136 vii 36-52.
58 See, for example, Koldewey 1990, 36, 74-76, 79-80, 118-121, 150, and 181-182.
59 The scheme proposed by Willcocks (1917) at the beginning of the century to recultivate the Mesopotamian plain faithfully reutilized the same levees for the big distribution canals. The same is true of projects implemented after the 1950s.
evidence. They show that during the first half of the second millennium the Euphrates still split near Fallūgah into several major branches which then coursed across the floodplain in a meandering pattern not unlike that shown on many Arabic, Persian, and other medieval maps.\(^{60}\)

The Branch Departing the Euphrates above Fallūgah (Map 8)

A very large fossil meander that was reconnoitered in 1977 some 8 km north of the modern Saklawiyah Canal\(^{61}\) indicates that a major watercourse departed from the left bank of the Euphrates above Fallūgah and flowed along the present southern edge of the Ğazārah in the direction of the large depression north of ‘Aqar Qūf,\(^{62}\) which, for topographical reasons, can only drain via a connection to the Tigris.\(^{63}\) Although this waterway cannot yet be dated with any degree of precision, it is almost certain that it gradually migrated southward until it finally took the course now followed by the Saklawiyah, the sinuosity of which shows that it was originally a natural channel. Rāpiqum, a town that was controlled at various times by Dāduša, Šamši-Adad I, and...

\(^{60}\) See the maps assembled by JANSSEN (1995, 220-223).

A Euphrates which was divided into several branches was still a characteristic feature of 17th- and 18th-century documents, including La Rûè’s “Assyrìa Vetvš...” (Fig. 6), which was first published in 1651 as an addition to his Atlas “La Terre Sainte en six cartes géographiques” (see LAOR 1986, No. 421). It is obvious that this map does not reflect the geographical reality of the mid-17th century but rather a historical situation reconstructed from older documents (for a more realistic, perhaps contemporaneous, geographical view of lower Mesopotamia at this time, see the map of Petrus Plancius, drawn in 1594, and recopied by P. van den Keere in 1607 [BRICKER and TOOLEY 1971, 120-121]). In this respect, one should note that Latin editions of Ptolemy’s second-century AD works, illustrated with maps, had been printed by the end of the 1470s (DILKE 1985, 162), and there was apparently great demand for them. The theory that they were repeated copies of documents from the second century AD still has its devotees today, but it also has its detractors; in fact, we are not sure if Ptolemy drew more than his World Map (DILKE 1985, 154). But whatever the truth is about his ‘Regional Maps,’ the documents attributed to him and printed from the 1470s on had to be reproduced from older exemplars. Also, we can observe that the branches of the Euphrates shown on his “Qvarta Asiae...” (Fig. 5) are similar to those shown on La Rûè’s map (Fig. 6). They recall to some extent the general pattern of the Euphrates network we are proposing for the second and first millennia BC (Maps 8 and 9). However, most of La Rûè’s hydronyms, as well as most of his and Ptolemy’s toponyms, show convincingly that we are dealing with identifications which are based on conjectural data. On the other hand, one should note that the junction between the Euphrates and the Tigris shown on both maps — and on other 17th- and 18th-century maps — is in agreement with Herodotus’ (1.193) statement that a ‘stream’ (τρχιαυγή) connected the Twin Rivers, and it also reflects the probable junction between the Main Branch of the Purattum and the Tigris during at least the second millennium BC (see below).

\(^{61}\) See Map 1 for the localization of the only meander actually known in this region.

\(^{62}\) GASCHE 1985, 582, and our Maps 8 and 9.

\(^{63}\) See the Maps for a remnant of this outlet. Its lower stretch was built by Daud Pasha in order to protect contemporary Baghdad from the danger of inundations (CHESNEY 1969, 54).

Before the time of Daud Pasha, the outlet connected with the Tigris slightly upstream of the capital as it existed in his day.
Hammurabi, and Ibal-pi-El II, was undoubtedly located near the point of its departure. The name of this channel cannot yet be identified in the third- and early-second-millennium textual record, perhaps due to the dearth of documentation from the region through which it passed. But it may have been the route followed by five hundred boats of the king of Aleppo which are said to have docked in Diniktum, if in fact they did not follow the Irnina branch of the river, which we situate north of Sippar rather than south of it.

Irnina and Zubi (Maps 5 to 8)

All assertions that the Irnina ran south of Sippar are based ultimately on the conjectures of Jacobson (1960, 176, and n. 4), who suggested that this branch departed from the left bank of the Euphrates at Sippar, flowed southeast and south over Kutha, passed south of Jemdet Nasr, and then joined the Zubi east of that site. While the Irnina is most definitely associated with the region of Sippar in Old Babylonian documents from Abū Ḥabbah and Tell ed-Dēr, there is not a single bit of evidence to connect it with Kutha or its region. Moreover, Jacobsen suggested that the course of the Zubi followed a line of tells, identified by Adams and Crawford, which began at Abū Qubûr (north-northwest of Sippar) and passed over Tell ed-Dēr (northeast of Sippar) and then to the east of Jemdet Nasr (east-southeast of Kutha), where it joined the Irnina. But this is a topographical impossibility, since the Zubi would have had to flow up and over both the levee of Tell ed-Dēr and the levee just south of Ṭaḥmūdiyyah if it had followed such a course (see our maps). It is necessary, therefore, to review the evidence once more.

64 Anbar 1975, 2-7.
65 As correctly observed by Forrer (1921, 13), contra, among others, Brinkman 1968, 127, n. 748. A good candidate for Rāpiqum would be Tell Anbar, which is situated on the left bank of the present Euphrates, just northwest of Fallūqū and not far south of the present ‘mouth’ of the Saklawiyah canal. This large and high tell, which has not yet been excavated or extensively surveyed, was first described by Ward (1886, 24-25), who, however, suggested that it should be identified with Sippar-Amnānum. According to Damergi (1986, 11), Tell Anbār was occupied during the time of the First Dynasty of Babylon, which roughly coincides with the period of the first attestations of Rāpiqum (going back to Ur III; see Edzard and Farber 1974, 157). However, the most significant remains at this imposing site belong to periods that are much more recent: Parthian/Sassanian and Islamic up to the 13th century AD.
66 Dossin 1956, 67: 22-23. Diniktum was situated in the lower Diyala region, probably on the Tigris itself (ibid., 67). See also Nashef (1982, 82-83) for a possible identification with Tell Muhammad, which lies a few hundred meters south of Tell Harmal. Tell Muhammad, however, has also been suggested as a plausible candidate for Agade (Wall-Romana 1990). For an early Kassite year formula mentioning excavation work on the ID.Diniktum.KI, which may well refer to a canal between the Durūl (= Turān/Turnat) or Ṭaḥban rivers and the Tigris, see Brinkman 1976, 146-147 Ka.2.1 and text 18.
67 Compare Gibson 1972, 5; Carroué 1991, 130.
68 Jacobson 1960, 176.
We know that the Irnina flowed into the Zubi above Puš. This town, which is associated with Sippar in Ur III and Old Babylonian texts, was certainly near (if not identical with) Dūr-Puš, in the hinterland of which there was a field bordering on both the Tigris and the Purattum. Now, as we will see below, the Purattum flowed in an easterly direction from Sippar to Sippar-Amnnānum (Tell ed-Dēr) and came very close to the modern bed of the Tigris after turning southeast (see Map 8). The following conclusions can be drawn from these facts:

1) the Tigris at this latitude followed a course which more or less corresponded with its modern one (contra ADAMS 1965, Fig. 3, and TAVO, Map B II 12.1), and

2) Puš should be located in the general region of the later Seleucia, where the Tigris and Purattum came very close together and probably even joined (on the question of such a junction, see below).

Moreover, if Puš, on the Zubi, and Dūr-Puš, on the Tigris, were identical or even in close proximity, then:

3) ‘Zubi’ was another name for ‘Tigris.’

The identity of the two names tends to be confirmed by evidence showing that the town of Ḫibarītum was on the Zubi in the Ur III period and on the Tigris in the Kassite era, and it is virtually assured by lexical evidence from Erimḫuš and the Practical Vocabulary of Assur, which equate the sign ZUBI with both ID.HAL.HAL.LA and Diglat, two ancient designations of the Tigris. Finally, if the Irnina joined the Zubi/Tigris above Puš, then:

69 The confluence of the Irnina and Zubi is demonstrated by the Cadastre of Ur-Nammu (KRAUS 1955, 46-47 A ii 24-iv 26). For a schematic reconstruction based on the section mentioning these two watercourses, see STEINKELLER 1980, 33 (translation on p. 26, n. 15).

70 For the Ur III evidence, see STEINKELLER 1980, 27. For the association of Puš and Sippar in the Old Babylonian period, see, e.g., WALKER 1986, No. 3 : 11-12.

71 FEIGIN 1979, No. 469 : 4-5. The field was given to the nadītum Bēlīnī during the reign of Samsulūna. The tablet recording the gift (YBC 6816) was kindly collated by U. Kasten, who confirms that the sign in question is idigna not ZUBI (contra GIBSON 1972, 13, n. 62, and STEINKELLER 1980, 27, who incorrectly cites YOS 12 468 rather than YOS 12 469). Kasten also noted that there is no break in the middle of line 4, as indicated in Feigin’s copy.

72 This proposed course for the Tigris is difficult to explain from a topographical and geomorphological point of view.

73 KRAUS 1955, 46 ii 26, 47 iv 12-13.

74 LUTZ 1919, No. 15 : 14-15 ; see also KRAUS 1955, 63.

75 [ZUBI] = ID.HAL.HALLA (CAVIGNEAUX et al. 1985, 90 r. iii 13’); ID.ZUBI = di-[ig-lat] (LANDSBERGER and GURNEY 1957-58, 333 : 739 — di-[ig-lat] is restored after an unpublished copy by Geers of VAT 14253, see CAD Z, p. 13a s.v. zā‘ibu lexical section). KRAUS (1955, 63) also equated the Zubi with the Tigris, as did HALLO (1964, 68), who saw the Zubi as a short canal between Sāmarra and Baghdad (this
4) their junction must be sought north of Seleucia near the present confluence of the Diyala and Tigris (see Map 8), where there is physical evidence that the Euphrates and Tigris systems joined in the past.\(^76\)

On this basis, therefore, we propose to identify the course of the Irnina with the line of fossil meanders which begins about 20 km northwest of Abū Ḥabbah and then crosses the plain between the Euphrates and Tigris in an easterly direction, passing by Abū Qubūr, and afterward turning slightly northeast and then east to the Tigris near the latter’s junction with the Diyala (see Map 8).\(^77\) Another plausible candidate is the line of meanders to the north which crosses the plain in a northeasterly, then southeasterly direction approximately midway between ‘Aqar Qūf and Abū Ḥabbah, and then possibly joins the above-mentioned line some 10 km north-northeast of Tell ed-Dēr (via the course indicated by the dashed line). We would prefer to identify this latter line, however, with a later watercourse called the Patti-Enlil, which we will treat further on.

Not only is a roughly accurate localization of Puš essential to the proper placement of the Irnina, but so is an approximately correct localization of Namzium (Namsūm), Ḥirītūm, and Ḥibarītūm, inasmuch as the former two towns were situated on the bank of the Irnina and the latter was located on the bank of the Zubi above its confluence with the Irnina. The relevant evidence for the locations of these towns is presented in the following paragraphs, where it will be demonstrated, once more, that location, however, is much too far north. Gibson (1972, 6) equated the Zubi with what he called the ‘Jemdet Nasr branch’ of the Euphrates (see also Jacobsen 1960, 176), although he admitted that at some time “the Zubi seems to have been connected, or considered part of the Tigris system” (ibid.). See also CAD Z, p. 14a s.v. za’ibu discussion section: “The logogram ZUBI seems to have referred originally to a specific arm of the Tigris in southern Babylonia.” Even the logograms representing Zubi and Tigris are written similarly. They are either orthographic variants of the same sign or they go back to a common original (Hallo 1964, 68).

\(^76\) It must be stressed that a junction between the two systems south of the latitude of Sippar is precluded because of topographical constraints.

\(^77\) According to Frankena 1966, No. 70 (see also Harris 1975, 114, and n. 164), the Irnina was either at least 51.8 km long (see e.g. Waetzoldt 1975, 278 s.v. Irnina) or at least 25.9 km long, depending on how one interprets the text in question (a letter from Abi-ešuḫ to various high officials in Sippar concerning the imminent arrival of a high flood). The document states simply that 120 us and 24 us of the banks of the Irnina were to be reinforced by the palace and the officials of Sippar respectively, the total distance mentioned being 144 (us) x 720 (cubits per us = 360 m) = 51,840 m = 51.8 km. This figure, which may be a measure of the distance along either one of its banks or both of them together, most probably refers to that portion of the Irnina that was located within the administrative realm of Sippar (which could have plausibly included the entire course of this channel). The important point here, however, is that no matter how this measure is interpreted, the information contained in this letter neither precludes locating the Irnina north of Sippar nor favors locating it to the south of this city.

Also, on the basis of several Mari letters which state that Namšum and Puš were ‘below’ (saplānum) Sippar, it has been assumed that the course of the Irnina (with which both were associated) had to be situated ‘south’ of this city (see e.g. Birot 1993, 228, note a, 234, note f; Lacambre 1997, 439, n. 72). We disagree, but we will deal with this matter below in connection with our discussion of the evidence bearing on the town of Ḥirītūm (see especially n. 104).
the course of the Irnina had to be situated north of Sippar. We will begin with the
evidence for Namzium and Hibarltum and then turn our attention to H̄iritum, the latter
being particularly well documented since it was the site of a major confrontation
between the Elamites and the allied forces of Babylon and Mari during the time of
Hammurabi and Zimri-Lim.

In the Cadastre of Ur-Nammu, in the section delineating the boundaries of the
district belonging to the moon-god Sin, the town of Namzium is said to have been
situated on the Irnina, a waterway which formed much of the district’s southern
frontier. From the detailed description given in the text, it is clear that Namzium lay
not far northwest of Puš. Therefore the Irnina also lay northwest of Puš (that is,
northeast of Sippar), because Puš, as we have just seen, was situated close to both the
Purattum and the Zubi/Tigris, below the Irnina’s junction with the latter. (For a
reconstruction of the district of Sin incorporating our proposal for the course of the
Irnina and the approximate locations of the more prominent toponyms of the district,
see Map 5.) A location north of Sippar for Namzium (and thus the Irnina) is confirmed
by an Old Babylonian text from Ur, which contains an account of the money spent on a
journey from Mankisum (on the Tigris some distance upstream from Baghdad) to
Namzium, Sippar, and finally Kish. The order of the destinations shows that
Namzium (and the Irnina) was located north of Sippar rather than on the branch of the
river flowing past Kutha to the south. Otherwise the route would make little sense. (For
the approximate location of Mankisum, which is also one of the stops in the Old
Babylonian itineraries, treated below, see Maps 6 and 7.)

The Cadastre of Ur-Nammmu places the town of Hibarltum along the bank of the
Zubi, to the north of Puš and above the confluence of the Irnina with the Zubi (see

79 Compare Frayne (1991, 388-389), who situated the district of Sin — and with it the Irnina — north of
Sippar, and Kraus (1955, 63), who situated it north or east, or north and east, of this city. Steinkeller’s (1980)
proposal to locate the district of Sin southeast of Sippar hinges on Jacobsen’s (1960, 176, and n. 4) interesting
but ultimately baseless suggestions for the courses of both the Irnina and the Zubi.
80 The location of Mankisum on the Tigris above the confluence of the Diyala is beyond dispute. The
Mari letters show that it was a strategic ford on the road between Esnunna and Rāpiqum (see, for
example, Jean 1950, No. 25 : 9 ; Dossin 1951, No. 59 : 7-14 ; Dossin 1952, No. 33 : 6-10 ; and Biro廷
1993, No. 140 : 15-16). A location at the latitude of Esnunna or even higher is very probable, since
according to Dossin 1952, No. 33 : 6-10, the Ġezira (kašum) lay directly west of the ford at Mankisum
(see Maps 6 and 7).

A possible candidate for Mankisum is Adams’ (1972, 190 and map 1A) site 045 (Tell Kurr), which lies
on the east bank of ’course B’ (Mid-Holocene to approximately 13th century AD) of the ancient Tigris
as reconstructed by Wilkinson (1990a, 126-127). Mankisum should then be located slightly above
the northern limit of our Maps 6 and 7, about 4 km west of the present bed of the Tigris.

81 The text in question is UET 5 685, discussed by Leemans (1960, 170-171).
The Old Babylonian itineraries, in turn, place Hibarītūm three stops beyond Sippar-ṣērim (Abū Ḥabbah) and three stops downstream from Mankisum (see Map 6). This again situates the Irnīna north of Sippar, not south of it, as the following analysis shows.

The itineraries in question trace the route followed by a military or trading expedition originating in Larsa and bound for Upper Syria, with the initial leg, from Larsa to Mankisum, almost certainly being undertaken by boat. Our concern here is the latter half of this leg, from Sippar-ṣērim (Abū Ḥabbah) to Mankisum. Concerning this portion of the itinerary we are told that after the expedition arrived in Sippar-ṣērim from Babylon, it passed along the Purattum to Sippar-dūrim (Tell ed-Ḏer). The locations of the two Sippars are well known. The next stop, Dūr-Apil-Sīn, a town which is attested in texts from Abū Ḥabbah and Tell ed-Ḏer, was located on a navigable waterway and its territory seems to have been adjacent to that of Kār-Šamaš, a town known to have been situated on the Purattum. A location between Tell ed-Ḏer and the Tigris is probable. From Dūr-Apil-Sīn the expedition traveled to Hibarītūm, which, as we have seen, was situated on the Zubi in the Ur III period and on the Tigris in the Kassite era and which is undoubtedly to be sought in the region of modern Baghdad. After Hibarītūm, the next stop mentioned is Kār-Kakkulātim, the quay area of the well-known town of Kakkulatum. The latter was situated on the Tigris below Mankisum, since a letter from Mari reports that troops traveled from Ḫirītūm (on the

82 KRAUS 1955, 47 iv 1-19.
83 GOETZE 1953, 51 i 11-19; HALLO 1964, 63 obv. 5-9.
84 According to GOETZE 1953, 51 i 18-19 (copy p. 52), Mankisum was the point in the journey from Larsa “when ... the boats retu[med]” (i-nu-ma ... GIS.MA/HLA i-tu-\(\lambda\) \(\nu\) (\(-\|\)). Goetze transliterated the broken verb here as i-li-[ka-nim] (GOETZE 1953, 51 i 19). But despite his strenuous objections (GOETZE 1964, 115, n. 15) to Hallo’s reading i-tu-\(\mu\)-nu, itself a misrepresentation of Landsberger (apud LEEMANS 1960, 170), who had supposed instead the reading i-tu-[ra or ra-nim], Goetze’s copy clearly shows a TU-sign and not the beginning of a LI (compare, e.g., the TU- and LI-signs in GOETZE 1953, 53 iii 14 and 54 iii 29).
85 The location of Dūr-Apil-Sīn on a watercourse is confirmed by DOSSIN 1933, No. 33, which concerns grain that is to be transported there from Sippar by boat. See also note 104 below.
86 This Kār-Šamaš should not be confused with the town of the same name on the Tigris (see below). For evidence that the territories of Dūr-Apil-Sīn and Kār-Šamaš were contiguous, see KLENGEL 1973, No. 17, which records the purchase of an undeveloped parcel of land witnessed by the elders of both towns (lines 19 and 23).
87 For evidence that Kār-Šamaš was located on the Purattum, see GOETZE 1948, 95 No. 23 : 5-6 and PINCHES 1964, 54 r. 15.
88 Note that in the first-millennium geographical list 83-3-23, 24 Dūr-Apil-Sīn follows Akšak/Opis and precedes KUR.TI, Sippar-\(\Xi\) Annunitum, Sippar-\(\Xi\) Šamaš, and Sippar-Amnānum (see REINER and CIVIL 1974, 63), which indicates a location between the longitudes of Opis and Sippar-Amnānum/Annunitum (rather than one to the NW of Sippar for example).
90 GOETZE 1953, 56.
Irnina) to Kakkulatum, and then upstream to Mankisum (see Map 7). Kakkulatum was undoubtedly also located in the region of modern Baghdad, since it is listed in association with towns of the lower Diyala region in a record of tax payments made to Ibbi-Sin. Kār-Šamaš and Mankisum, the next stops, were also on the Tigris. The former was situated north of Baghdad, along a stretch of the Tigris channel that was prone to shifting, and the latter, as we have seen, was located upstream from Kār-Šamaš, at the latitude of Ešnunna or slightly higher.

Therefore, if Ḥibarītum was located along the Tigris in the region of Baghdad (see Map 6), then Ḥiritum, another town on the Irnina, was located to the southwest of Ḥibarītum, in the general region of Abū Qubūr (see Map 7). As mentioned above, Ḥiritum was the site of a confrontation between the Elamites and the allied forces of Babylon and Mari during the Old Babylonian period. This Ḥiritum is almost certainly to be identified with the Ḥirit(um) mentioned in later sources as the site of a battle in the province of Sippar early in 652 BC between Assurbanipal, king of Assyria, and Šamaš-šumu-ukin, king of Babylon, his rebellious brother.

The fact that two important battles in Mesopotamian history were fought at Ḥirit(um) — both against enemies attempting to advance on Babylon from the north — indicates that the forward defense line of the capital ran through or very near this town. This was the narrow waist of Babylonia, where the Twin Rivers came closest together. This was where Nebuchadnezzar II later built his cross-country defense known as the ‘Wall of Media’ (Map 9) and where he could easily flood the low-lying terrain to the north. And finally this was also near where, some two centuries later, the forces of

91 BIROT 1993, No. 145 : 9-23. The letter reports that the sukkal of Elam took 30,000 troops upstream (30 li-mi sa-ba-am ... u-sa-aq-qa) from Kakkulatum to Mankisum.
92 KING 1912, Pl. 19ff. i 6, iv 14; see HARRIS 1955, 45, and n. 3, and 46.
93 The name of Hammurabi’s 42nd year commemorates the construction of a wall along the bank of the Tigris at Kār-Šamaš (UNGNAKD 1938, 181-182; HORSNELL 1974, 268-276). Apil-Sin also connects Kār-Šamaš with the Tigris in one of his year formulae (e.g., PINCHES 1964, No. 11 : Ka-ar-dUTU ša a-aly 1-di-ig-la-at). For Mankisum, see n. 80 above.
94 A date formula of Apil-Sin states that the king returned the bed of the Tigris to its former location (AL-RAWI 1993, 24 : 16’ : mu gû id.idigna ki-bi-Sê bi-in-gi4-a); the formula is a variant of the one mentioning Kār-Šamaš (ibid., 28).
95 According to the Cadastre of Ur-Nammu, Ḥiritum was west (or northwest) of Namziium (see KRAUS 1955, 47 A iii 12-21
96 HARRIS (1975, 88), citing the unpublished text BM 80327, also situated Ḥiritum north of Sippar. In her opinion it lay “close to Kar-Šamaš and on the water route between Sippar and Mankisum.” We believe, however, that Abū Qubūr is the most plausible candidate for Ḥiritum (note the occupational history of this site presented in the tables opposite Maps 8 and 9).
98 Compare Strabo, Geography, 2.1.26.
99 GASCHE 1989a, 31. If Nebuchadnezzar II had wanted to take advantage of the existing topography, he
Cyrus the Younger clashed with those of his brother Artaxerxes II, king of Persia, at the Battle of Cunaxa.100 The following few paragraphs highlight the most important evidence from Mari letters bearing on the first battle of Ḫiritum,101 concentrating on those containing information relevant to this town’s — and the Irnina’s — location north of Sippar.

After his overthrow of the kingdom of Ešnunna, the sukkal of Elam announced his intention to besiege Babylon itself.102 He led his army from Mankisum, on the Tigris, downstream to Kakkulātum, and from there advanced to Ḫiritum and put it under siege (see Map 7).103 Therefore Ḫiritum lay in relatively close proximity to Kakkulātum, which in turn was situated in the area of modern Baghdad, as we have demonstrated.

In response to the Elamite threat, contingents of the armies of Hammurabi and Zimri-Lîm left Babylon and installed themselves in Namsūm (Namzium), which, as we have seen, was located on the Irnina downstream from Ḫiritum.104 While the siege of

\begin{itemize}
 \item could have reused the old channel of the Irnina to flood the depression to the north of his wall. He could have also directed the water of the Patti-Enlil into this depression. It is interesting to note that a wall may have been constructed alongside the Patti-Enlil a century or so earlier, but the letter which may allude to it requires collation (Harper 1892-1914, No. 883 r. 3-6). The upper course of the Patti-Enlil, as we will see, ran very close to the former bed of the Irnina, and its lower course was almost identical with the latter’s (see below sub ‘Patti-Enlil’).
 \item Xenophon, Anabasis, 1.vii.14-viii.29. On BeSwer’s (1867, 166) proposal to identify ‘Tell Kuneise’ (40 km NW of Sippar) with Cunaxa, see Gasche 1995, 201, n. 1, and our Map 3.
 \item For a recent analysis of the battle, including preliminaries and aftermath, see Lacambre 1997.
 \item Charpin et al. 1988, No. 303 : 49'.
 \item Bilot 1993, No. 140 : 15-18 ; Charpin and Durand 1991, 63, n. 24, A.3618 : 21' - 26' ; and Lacambre 1997, 448, A.3669 + M.5368 + M.8691 r. 35' - 36'.
 \item Bilot 1993, No. 140 : 6-7.
 \item Namsūm is also described in this and another letter as being ‘below’ (saplānum) Sippar (ibid., lines 7-8 ; Charpin 1988, 17-18, n. 22, A.1873 : 4'). This has been understood by both Bilot (1993, 228, note a) and Lacambre (1997, 439, n. 72) to mean that the Irnina, on which Namsūm was located, was ‘south’ of Sippar, therefore following Steinkeller’s (1980) proposal to place this channel in the region between Sippar and Kutha. But the Akkadian term used — saplānum — also means ‘downstream,’ and we have just seen that it was possible to travel by boat from Sippar-dūrīm (Tell ed-Der) east to the Tigris via Dūr-Apil-Sin. Note the three large secondary levees on the Maps [especially 2 and 6] which depart from the left bank of the Main Branch of the Euphrates east of Tell ed-Der and join the line of fossil meanders we have identified as the Irnina. These levees, as they appear now, are certainly not Old Babylonian in date, but the distribution pattern of the irrigation system was undoubtedly very much the same in the period with which we are concerned. Also, given the fact that they are important in size, and given the perenniality of the system, they could well conceal remains of earlier irrigation canals. We have arbitrarily located Dūr-Apil-Sin along the central one of the three. It should be noted as well that our proposed location of the Irnina lies nowadays some 2-3 m lower than the top of the levee running from Abū Ḥabbah to Tell ed-Der. According to geomorphological evidence, the topographical situation was very similar during the second and first millennia BC. This is an appreciable difference in elevation over such a short distance. Therefore, saplānum (‘below’) in the context could also mean that Namsūm was topographically lower than Sippar.
\end{itemize}
Hiritum was underway, Babylonian troops outflanked the Elamites and raided Ešnunna, setting fire to the grain crop and plundering livestock. Hammurabi went to meet the returning men in Puš, where he received their booty and gave them orders to turn around and renew their attack (see Map 7). His movements and those of his troops would make little sense if we located Puš southeast of Kutha, as is now commonly done.

Finally, after the sukkal of Elam was defeated at Hiritum, he retreated with his army directly across the Tigris to Kakkulatum, which he destroyed before proceeding upriver to Mankisum. The Elamite itinerary again shows that Hiritum and Kakkulatum lay in relatively close proximity.

In sum, there can be little doubt that the course of the Irnina lay north of Sippar and not south of it. The evidence allows no other conclusion. Our task now is to identify the channel which passed through Sippar itself.

Purattum (Map 8)

During the first half of the second millennium, the upper course of the Euphrates through Syria continuing downstream to Sippar was called the Purattum. In the Mari texts the name of the river was spelled syllabically as Pu-ra(-at)-tum or Pu-ra-an-tum and logographically as ID.UD.KIB.NUN.KI (with the variant spellings ID.UD.KIB.NUN, ID.UD.KIB.NUN.NA, ID.UD.KIB.NUN.NA.KI, and ID.KIB.NUN.NA). In administrative documents from Babylonia proper, the vast majority of attestations of ID.UD.KIB.NUN.KI and its variants stem from the Sippar region, although the name is also attested in administrative texts from and concerning Uruk, Larsa, and Ur.

106 Also said to be ‘below’ or ‘downstream from’ Sippar (ibid., lines 19-20). The comments made above in n. 104 about Namsûm apply to Puš as well; compare BIROT 1993, 234, note f; LACAMBRE 1997, 439, n. 72.
108 See, for example, LACAMBRE 1997, 433.
109 BIROT 1993, No. 145 ; also ibid., Nos. 144 and 146 ; LACAMBRE 1997, 446, A.3669 + M.5368 + M.8691 : 9'-16'.
110 The Mari letters exhibit mostly syllabic spellings, but logographic writings are also common (see, for example, DOSSIN 1950, No. 62 : 17 ; JEAN 1950, No. 131 : 11, 37 ; CHARPIN et al. 1988, No. 31 : 37 ; No. 220 : 8 ; BIROT 1993, 27 No. 107 r. 3’, 14’; No. 118 : 9; and No. 151 : 48, 53). Sargonic inscriptions refer to the Euphrates in Syria as UD.KIB.NUN.İD (and variants). For a recent analysis of the third millennium evidence bearing on the Euphrates, see CARROUE 1991.
111 Syllabic spellings are rarely, if ever, attested in documents from the south.
112 KLENGEL 1973, No. 100: 13 (Uruk [ID.UD.KIB.NUN.KI 3a UNUG.KI]); FRANKENA 1966, No. 4 r. 8'-9’ (between Larsa and Ur), and FIGULLA and MARTIN 1953, No. 181 : 5 and Nos. 855-856 (at Ur); see also LEEMANS 1976, 216.
According to the physical traces of the levees themselves, the Euphrates bifurcated some 20 km downstream from the Fallūḡah Terrace, not far from the point where the Irnina departed from the left bank of the river toward the Zubi/Tigris. Below the bifurcation one channel flowed in a southeasterly direction toward Abū Ḥabbah (Sippar) before turning to the northeast in the direction of Tell ed-Dēr (Sippar-Amnānum), while the other flowed in a more southerly direction toward the Iskandariyāh Terrace which it roughly paralleled before turning directly south.\footnote{113}

The Main Branch of the Purattum (Map 8)

It is certain that the first of the two channels mentioned in the preceding paragraph — that upon which both Abū Ḥabbah and Tell ed-Dēr are situated — was the Purattum, since the logographic writing of this name, \textit{fD.UD.KIB.NUN.KI}, means ‘River of Sippar,’ and an ancient map of the region, BM 50644, labels this branch as such.\footnote{114} Therefore we will call this channel the Main Branch of the Purattum (see Map 8).\footnote{115} It is also certain that east of Tell ed-Dēr this same channel approached the Tigris in the region where Seleucia would later be built, because a field belonging to a \textit{nadītum} is described as bordering on both the Purattum and the Tigris.\footnote{116} There is therefore a strong possibility that the two rivers joined here, but firm evidence will be lacking until further investigation is carried out in the region east and south of the present project area. At the moment we favour the following hypothesis (see Map 8):\footnote{117}

If we posit that the Main Branch of the Purattum and the Tigris/Zubi joined south of where Seleucia would later be founded, then the common course of two rivers most probably followed the large levee that departs at this point in a southeasterly direction from the modern bed of the Tigris.

Some 25 km downstream, near site A166, this common course bifurcated. One fork of the river flowed almost directly southward to a point just east of Jemdet

\footnote{113}{For the locations of levees with fossil meanders on their summits, see Map 1. For the proposed courses of the two channels in the area of Sippar, see Map 8.}

\footnote{114}{THOMPSON 1966, Pl. 49, and republished by L. De Meyer in GASCHE and DE MEYER 1980, 6. The map is perhaps a late copy, but the original from which it was reproduced goes back to the Old Babylonian period. This is demonstrated by the notation \textit{UD.KIB.NUN.KI}-[\textit{a-ah-ru-ru-n}]} = Sippar-Jahrurum, a designation of Sippar that is not attested after the end of the Old Babylonian period.}

\footnote{115}{Before the existence of this channel was established (GASCHE and DE MEYER 1980), a putative channel from (Abū Qūbūr to) Sippar to Kish, Nippur, and districts south of Nippur was similarly labeled. It was called the “main course of the Euphrates” (JACOBSEN 1960, 175-176) and “main bed of the river” (GIBSON 1972, 5) in the older literature, and has even been considered the “most important early bed” (ADAMS 1981, 159) and “main channel of the Euphrates” (BRINKMAN 1984, 175) in the later literature.}

\footnote{116}{FEIGIN 1979, No. 469 : 4-5 (collation by U. Kasten shows IDIGNA BOI ZUBI).}

\footnote{117}{It should be noted that this hypothesis differs slightly from that which we have proposed in the proceedings of the Berlin colloquium.}
Second- and First-Millennium BC Rivers in Northern Babylonia

Nasr. A reexamination of the topography of the area in question suggests that this fork did not continue southward after reaching the latitude of Jemdet Nasr, as hypothesized in our Berlin paper, but rather that it turned to the southeast (see Map 8). This is because the terrain in this region slopes from the ‘Kutha levee’ in the direction of Jemdet Nasr rather than the other way round. However, the present state of our archaeological and textual documentation precludes us from identifying with certainty both the name of this branch and the names of the two others east of site A166. (We believe, though, that the more northerly of the latter two was in all likelihood a stretch of the ancient Tigris.)

The Kish Branch118 of the Purattum (see also below, sub Araḥtum) (Map 8)

We know that the Purattum flowed past Kish from at least the middle of the Akkadian period until late in the reign of Samsuiluna, because an inscription from the reign of Narām-Sīn and the date formula for Samsuiluna year 24 both place Kish on the bank of this river.119 However, from a topographical point of view, it is impossible to connect the common course of the Main Branch of the Purattum and the Tigris/Zubi with the river network centered on Kish/Kutha, because the water would have had to flow uphill from the latter to the former beginning near Jemdet Nasr.120 Therefore, the Purattum through Kish has to be identified with a channel that followed the levee to the south of Sippar. This is a channel that flowed roughly parallel to the Iskandariyāh Terrace, then turned south in the direction of Babylon until reaching a point about 32 km north of the capital, where it followed the levee upon which Kutha (Tell Ibrahim) is located for some 15 km121 before again turning south toward Kish (see Map 8). In our reconstruction we will call this channel the Kish Branch of the Purattum.

Beyond Kish, the watercourse in question flowed in an easterly direction and then turned southeast. If further investigation eventually demonstrates that this channel continued on to Nippur, then it can also be identified as the Purattum, because Samsuiluna claims to have built a wall along the İD.U.D.KIB.NUN.KI here.122 It would also

118 Gibson (1970, esp. p. 114) used the same name, but the course he reconstructed (ibid., Fig. 69) differs from the one reconstructed in the present study.
120 See the drainage pattern of this area as illustrated on Map 2.
121 It is interesting to note that many of the sites located on the ‘Kutha levee’ (except Kutha itself) are concentrated along this 15 km stretch (see Map 3). Despite the fact that this levee remains high and wide downstream of the stretch in question, we could not find a name for the ancient waterway which amassed it, although traces of meandering watercourses both on top of and on the southern slope of the levee southeast of Kutha are shown by Dougrameneji and Clor (1980, Fig. 5, the units labeled OR = Old River Bed Soils [we owe this information to K. Verhoeven]).
then be identifiable with an older watercourse named the ‘River of Kish’ (dıD.KIŠ.KI), which is attested in an early Sargonic text from Nippur.123

\textit{Araḥtum (Map 8)}

The Araḥtum is attested with certainty beginning only in the reign of Sumulael.124 Babylon’s location on the Araḥtum is shown by a contract from the capital recording the rental of boats for a journey to the mouth of this channel;125 Dilbat’s location on it is well known.126 We propose, therefore, that at least during the early part of the second millennium this channel departed from the right bank of the Purattum (Kish Branch) some 32 km north of Babylon, at the point where the latter waterway turned toward Kish.

The situation is complicated, however, by evidence that the Araḥtum also flowed in the proximity of Sippar. According to a real estate document from this city dating roughly to the time of Abi-ėsuḫ, a dike of the Araḥtum formed one of the boundaries of a field belonging to the ugarum of Ṭābūm,127 an irrigation district which is attested in some 40 Old Babylonian texts from Sippar.128 Evidence for the Araḥtum’s proximity to the Purattum is found in another real estate text from this city, wherein the latter is named as the border of another field in Ṭābūm.129 In this district, therefore, the Araḥtum flowed fairly close to the Main Branch of the Purattum (the river through Sippar and Sippar-Amnānum). Ṭābūm, then, must have been located west or northwest of Sippar. It is interesting to note that the Araḥtum near Sippar was apparently even called ‘Upper Araḥtum’ (dıD.A-ra-ah-tum AN.TA) in certain texts of the period.130 This

123 Westenholz 1975, No. 24 ii 7.

124 Gautier 1908, No. 3. The attestation mu-kin-iḏ.KA-a-ra-ah-tum-ma-k a-šē in the Ur III text BE 3 84 r. iii 50 may refer to the Araḥtum, but the interpretation of the passage is problematic, see Carroué 1991, 126-128. For an Early Dynastic reference to a possible Sumerian equivalent, see Brinkman 1995, 22-23, n. 35.

125 Van Dijk 1968, No. 59.

126 See, e.g., Gautier 1908, No. 3; Klengel 1973, Nos. 19 and 23; etc. The latter two include a tablet which records the exchange of a field bordering on the Araḥtum, with the elders of Dilbat confirming the transaction, and another which records the purchase of a field, also on the Araḥtum, with the šatammu of Dilbat acting as one of the witnesses.

127 Van Lerberghe 1986, No. 37 : 31’ (we thank M. Tanret for having brought this document to our attention). It can be roughly dated because of prosopographical connections to \textit{ibid.}, No. 36, which bears the date formula of Abi-ėsuḫ year “aa.”

128 See, e.g., Harris 1975, 379; Dekieere 1994, 271-272; \textit{idem} 1994a, 308; \textit{idem} 1995, 140; \textit{idem} 1996, 318-319; and \textit{idem} 1997, 171.

129 Dekieere 1996, No. 675 : 5-6, 31-32.

130 See, e.g., Szlechter 1963, 83 (Umm G 18) : 1 and YBC 11041 : 2 (unpublished).

This stretch of the river was still known as the Araḥtūm in the early seventh century BC. In 694, Sennacherib led a flotilla down the Tigris to Opis, where his inscription states that the boats of his
raises the possibility that there were two different names for a single stretch of the same river beginning late in the reign of Samsuiluna or during the reign of Abi-ešuḫ.

The evidence summarized above can be harmonized only if we assume a westward shift of the Euphrates system toward the Araḫtum line through Babylon, the capital. As we have already documented, this was a period marked by both sluggish flow and periodic catastrophic flooding in the Euphrates system. Under such conditions lateral cutting, course substitution, and avulsion could occur, the latter being a phenomenon in which old sediment-choked channels flood, break their banks, and initiate new channels which eventually conduct the entire flow. Something like this probably began to happen already at the end of the reign of Hammurabi, when this king claims to have “dug the Purattum to Sippar.” Then by late in the reign of Samsuiluna or shortly thereafter, water volume in the Kish Branch may have dropped to a level sufficiently low to create conditions conducive to a shift of flow to the west, along the Sippar-Babylon line, which then became known as the Araḫtum not only at Dilbat and Babylon but also upstream all the way to its point of divergence from the Purattum some 20 km northwest of Sippar. This shift would have had a deleterious effect on the water supply of all settlements previously connected with the lower course of the Kish Branch of the Purattum (including Kish itself).

Abgal and Me-enlilla (Map 8)

The Euphrates channel known as the Abgal, which is first attested in the Akkadian period, was clearly situated east of the Araḫtum, not west of it. The oft-repeated notion that the Abgal should be identified with the Pallakottas channel mentioned by Arrian and Appian and with the Pallukkatu channel attested from the mid-sixth century on should be discarded. Jacobsen, among others, assumed a phonetic development Abgal > Apkallatu > Pallukkatu > Pallakottas, and suggested

expeditionary force were hauled overland to the Araḫtu (Luckenbill 1924, 73: 57-64). This was an ideal place for portage, because it was here that the Twin Rivers came closest together (compare Strabo, Geography, 2.i.26).

132 We saw above that this upper stretch was even called the ‘Upper Araḫtum’ in contemporary documents.
133 The name is almost always written ID.AB.GAL or ID.ABGAL (NUN.ME); however, in a lexical list from Emar it is written Ap-kal-li-tu₄ (Arnaud 1987, 148 : 40’).
134 As correctly observed by Frayne (1992, 49), although he elsewhere incorrectly situates Kazallu, Kiritab, and Api’ak — territories through which the Abgal coursed — north and south of Borsippa (ibid., Map 2 on p. 8).
136 See, for example, Arrian, Anabasis Alexandri, VII 21.1-4 (= Brunt 1983, 277-279).
137 For a portion of the documentation, see Jursa 1995, 201-203.
138 This spelling does not actually exist, but compare Ap-kal-li-tu₄ (Arnaud 1987, 148 : 40’).
that this channel stemmed from the Araḥtum and lay south of Babylon. Gibson and Adams later identified the Abgal with an even more westerly branch of the Euphrates. However, documentary evidence from the period in question speaks directly against locating the Abgal along the western margins of the alluvial plain.

The Abgal in fact branched from the right bank of the Kish Branch of the Purattum near Kish itself and then flowed on toward Marad. From a point about one-third of the way from Kish to Marad, the Abgal probably followed the approximate line of the modern Hillah branch of the Euphrates, which here flows almost directly north-south. Evidence for the Abgal’s association with Kish is found in a document from this city which records the purchase of a field bordering on the Abgal. The transaction is sworn by Zababa, and several of the witnesses also bear names with Zababa as their theophoric element. Evidence that the Abgal continued on from Kish to Kiritab, Api’ak, and finally Marad comes from a variety of texts. The Maništušu Obelisk records the sale of a field bordering on the Abgal within the territory of Kiritab (Girtab), which the Cadastre of Ur-Nammu shows was situated north of Api’ak (a district traversed by the Abgal from north to south), which in turn was located just north of the territory of Marad. In the Isin-Larsa period, the region from Kish to Marad was dominated by the kings of the Manana Dynasty. One of these kings, Sumuditāna, who ruled both Kish and Marad, states in a year formula that he

139 JACOBSEN 1960, 177, and n. 6.
140 GIBSON 1972, 5; ADAMS 1981, 159. Gibson, following the conclusions of MEISSNER (1896), suggested that the channel ran in much the same bed as the present-day Hindiyah (see also CARROUE 1991, 123), while Adams suggested only a westerly course.
141 FIGULLA 1914, No. 3 and No. 3a (envelope).
142 FIGULLA 1914, No. 3: 17 and r. 5-7 respectively. The correct provenience of the tablet was established by KRAUS (1955, 56, n. 1).
143 Based on his thorough examination of the sources for the Manana Dynasty, CHARPIN (1978, 37-38, n. 77) seems to have been the first to observe that the Abgal flowed from Kish to Marad. The unwarranted identification of the Abgal with a much later channel west of Babylon has often led to the incorrect localization of Kiritab and Api’ak, which were clearly located between Kish and Marad rather than further west, below (or even above) Borsippa (see, for example, KRAUS 1955, 60; CARROUE 1991, 127, Fig. 1; FRAYNE 1992, 8, Map 2; and TAVO, Map B II 9.2).
145 In fact their territories were contiguous, sharing a common border at An-za-ĝar. d Nu- muš-da (KRAUS 1955, 46 A i 11 [Kiritab], 46 ii 19 [Api’ak]).
147 Api’ak and Marad shared a common border at Me-en-î-li (KRAUS 1955, 46 ii 2, 4 [Api’ak], 48 iv 1-2 [Marad]). Further confirmation of Api’ak’s location between Kish and Marad (and not further west) is found in the NB temple list BM 55476 (82-7-4.49), which groups the temples of Apāk with those of Kish, Hursagkalama, and Kutha (for edition and discussion, see GEORGE 1993, 49-56).
(re-)excavated the bed of the Abgal, while Ḥaliyum, an earlier king, named one of his years for his damming of the Abgal and the Me-enlilla.

The Me-enlilla is first attested in the Ur III period. Although this channel falls outside the parameters of the present study, its close association with the Abgal calls for several comments here. It probably branched from the left bank of the Abgal (closer to Marad than to Kish) and then, according to the Ur III cadastre, flowed east-southeast along the northern border of the territory of Marad. Other evidence associating the Me-enlilla with the Marad region is found in two texts recording purchases of orchards on the bank of the Me-enlilla which are sworn by Lugal-marada, city-god of Marad, and kings of the Mananā Dynasty. The Me-enlilla is also mentioned in a letter from Larsa, perhaps indicating that this channel continued on to Larsa via the Nippur region. This watercourse is often linked with the Abgal in the textual record. As already noted, the Abgal and Me-enlilla are mentioned together in one of the year names of Ḥaliyum. In addition, an Old Babylonian forerunner of HAR-ra = ḫubullu XXII lists them together; an Ur III letter found at Kish mentions a 'dike manager...
of the Abgal and Me-enlilla'; and another Ur III letter from the reign of Ibbi-Sîn refers to a promise by Enlil (and its subsequent fulfillment) that Isbi-Erra would win control over the banks of the Tigris, the Purattum, and the Abgal and Me-enlilla.\(^\text{157}\)

5. THE KASSITE AND POST-KASSITE PERIODS

The identification of the major watercourses of the Kassite period, particularly in the region north of Babylon, is almost impossible at the present time, inasmuch as the overwhelming majority of texts dating to this era stem from Nippur, of which only a small percentage has been published.\(^\text{159}\) Moreover, the texts from 'Aqar Qêf (Dur-Kurigalzu) and Babylon — while originating from the region that is the focus of this investigation — provide little information on local topography.\(^\text{160}\) In other words, the evidence for the region north of Babylon is meager, and the evidence from the region south of Babylon is largely unexploitable and irrelevant to the present investigation.

Despite BRINKMAN’s (1968) exhaustive study of the post-Kassite period, the paucity of textual material makes it almost impossible to reconstruct the river network of Babylonia between c. 1150 and 750 BC. The archaeological evidence from this period is also meager (very little was known, for example, of the post-Kassite pottery assemblages at the time the large surveys were conducted on the floodplain). Although ARMSTRONG’s (1989) study has begun to fill in the picture of this nascent corpus — at least for Nippur — it cannot be used for a spatiotemporal redistribution of sites previously dated by means of uncertain pottery indicators. A similar situation obtains for the late second-millennium material recently excavated at Isin and sometimes erroneously attributed to a later period (cf., for example, ARMSTRONG 1989, 89).

6. MAJOR WATERCOURSES IN THE FIRST HALF OF THE FIRST MILLENNIUM (esp. 750-500)

Patti-Enlil (Maps 5 to 7, 9)

Evidence from several sources shows that a watercourse departed from the left bank of the Purattu and then flowed south of 'Aqar Qêf (Dur-Kurigalzu) into the

\(^{158}\) ALI 1964, 42 : 8 and 44 : 44 (= ALI 1970, 160 : 8 and 162 : 44 = MICHALOWSKI 1976, 254 : 8 and 255 : 44). This enumeration of watercourses in Babylonia at the end of the Ur III period parallels one found in the legend of the insurrection against Narâm-Sîn, wherein it is said that the Akkadian king was the guardian of the sources of the Irnina, Tigris, and Purattu (GRAYSON and SOILLBERGER 1976, 111 G : 7).

\(^{159}\) BRINKMAN 1976, 41-42. The 80 or so inscribed objects from Ur contain little topographical information.

\(^{160}\) BRINKMAN 1976, 43-44. Also, in the case of the more than 200 texts excavated at 'Aqar Qêf between 1942 and 1945 far fewer than half have been published.
Tigris.161 It is called the Patti-Enlil in texts from Babylonia during the Kassite and Neo-Babylonian periods,162 and perhaps the Patti-Bēl in Neo-Assyrian sources.163 Evidence for its location is found in an early ninth-century inscription of Tukulti-Ninurta II, who, after reaching Dūr-Kurigalzu from the Tigris,164 claims to have crossed this watercourse on his way to Sippar-of-Šamaš (Abū Ḥabbah).165 Over a century later, Tiglath-pileser III claimed that he re-excavated its bed after a long period of abandonment;166 and afterward, during the reign of Sargon II, two associates of Nabū-bēl-šūmātē, the legate of Birat, supervised a survey of this watercourse (and possibly another called the Nār-Hīrite167) to determine its navigability.168 As it turns out, the waterway was both navigable and connected with the Tigris, since Tāb-šar-Aṣšur, the royal treasurer, wrote to Sargon about an impending shipment of timber by river from the province of Guzāna to Nineveh that would have had to pass down the Ḥabūr to the Euphrates, across the Patti-Enlil, and up the Tigris.169 Tāb-šar-Aṣšur reported that a similar shipment had reached Nineveh the previous year from Sapirrutu on the middle

161 For a proposal to identify the Patti-Enlil with the Nahr 'Īsā of Abū-el-Fedā and the modern Saklawiyah, see TAHA BAQIR 1944, 5. In our opinion, one of the ancient channels evident in the area south of 'Aqar Qūf but north of Abū Ḥabbah would be a better candidate for the Patti-Enlil (see above sub 'Irmina and Zūbi').

162 The name is written \textit{id.Pa-at-ti-4EN.LI} in a Kassite letter from Nippur (RADAU 1908, No. 28: 11) and \textit{id.Pat-ti-4EN.LI} in a Neo-Babylonian sale document from Kish (WATELIN and LANGDON 1930, Pl. 16 W 1929, 142: 5).

163 In Neo-Assyrian sources the name is written \textit{id.Pa-at-ti-4BE}, \textit{id.Pat-ti-4BE}, \textit{id.Pat-ti-4Bl}, and \textit{id.Pat-ti-4EN} and is sometimes therefore referred to as the Patti-Bēl (see, for example, PARPOLA 1970, 275; idem 1972, 25).

164 After a three-day march through a thicket (GRAYSON 1991, 173: 52-53). This is an obvious reference to the perennial jungle of reeds in the large depression north of 'Aqar Qūf (on which see, e.g., TAHA BAQIR 1944, 5).

165 GRAYSON 1991, 174: 52-53.

166 TADMOR 1994, 42 (Ann. 9): 4-5.

167 Spelled \textit{id.hi-ri-te} in a Neo-Assyrian letter to Sargon II (see PARPOLA 1987, No. 210: 8-16). If this grapheme was intended to represent the proper name Nār-Ḥirite, then it is undoubtedly connected with the toponym Ḥirit(um), which was situated on the former course of the Irmina and was also the site of two important battles in Mesopotamian history (on which see under 'Irmina and Zūbi' above). It should be noted, however, that two contemporary Neo-Assyrian inscriptions (LUCKENBILL 1924, 79: 11; SCHROEDER 1922, No. 141: 221) employ the grapheme \textit{id.hi-ri-tu} (with determinative) to represent a generic Akkadian word for 'canal' (i.e., ḫiritu).

168 PARPOLA 1987, No. 210. Nabū-bēl-šūmātē is called ‘Nabū-bēl-šūmātē of Birat’ in this text and ‘Nabū-bēl-šūmātē, legate of Birat,’ in PARPOLA 1987, no 84 (where it is also indicated that his jurisdiction extended to Sippar). Birat was situated on the Euphrates between Borsippa and Ḥindānu (ibid., No. 87), probably in the region where the Patti-Enlil branched from the river, since it is mentioned in connection with the town of Munu, which was located on (or near) the Patti-Enlil (see, respectively, ibid., No. 90 and HARPER 1892-1914, No. 883). The region of Birat (and the Patti-Enlil) belonged to the governorate of Assur, which was administered at this time by Tāb-šil-Ešarra (PARPOLA 1987, No. 90).

169 PARPOLA 1987, No. 63; see also FALES 1993, 81-82 (81 n. 11 for the Patti-Enlil specifically).
Euphrates, proving that the route was practicable. We tentatively identify the Patti-Enlil with one of the two lines of fossil meanders which cross the plain in an easterly/southeasterly direction from the Euphrates to the Tigris approximately midway between Dūr-Kurigalzu and Sippar (see Map 9). A junction of the southernmost of these two lines with the eastern stretch of the older Irnina would have been possible through the channel represented by the dashed line on our Maps 5 to 8 (compare Map 9).

Purattu, Arafytu, and the Major Eastbank Canals from Sippar to Babylon (Map 9)

When Tukulti-Ninurta II reached Sippar-of-Šamaš in the early ninth century, after having previously crossed the Patti-Enlil south of Dūr-Kurigalzu, he states that he “took the way towards the Purattu,” a clear indication that the channel upon which Sippar was situated in the Old Babylonian period and earlier was no longer called by that name. Near the end of the eighth century, an inscription of Sargon II indicates that the countryside north of Babylon had lapsed from cultivation and that it had become a desert. If Sargon’s statement can be credited, a major dislocation had occurred in the water supply of this region. By the beginning of the ninth century the bulk of Euphrates flow had shifted to the old Arafytum channel, which was now called the Purattu. Most of the region under study, therefore, had to be served now by artificial canals stemming from this line, the more important of which are first attested only later, during the era of the Neo-Babylonian dynasty.

Certainly in the late seventh century, the old bed of the Purattum from Abū Ḥabbah to Tell ed-Der (the ‘Main Branch’) was either dry or conducted little flow. Nabopolassar had to re-excavate the channel to Sippar and line it with baked-brick and bitumen because “the Purattu had moved far off.” The rejuvenated waterway became an artificially regulated canal, which was called the Nār-šarrī (‘King’s Canal’) in Neo-Babylonian, Achaemenid, and Seleucid times, and the Naḥar-Malkā

170 Parpola 1987, No. 63 r. 3-7.
171 ana pūt(sag) ld.Purattu šabatū in the section of the annals of Ashurnasirpal II describing his journey from Sūru, which was located on the Ḥabur (ibid., 176: 97), some distance away (ibid., 214 iii 28-29).
173 Langdon 1912, 64 No. 2. There are no known dated economic documents from Abū Ḥabbah between Samsuditana year 22 (see Gasche 1989, 113 and Plan 8) and 675 BC (see Ungnad 1908, No. 2). After this long hiatus, significant documentation begins again only under Kandalānu, in the third quarter of the seventh century (Brinkman and Kennedy 1983, 39-52).
174 Gasche 1988, 43.
175 Jursa 1995, 204-205; van der Spek 1992, 237, nn. 9-10; and Oelsner 1986, 403, n. 551. The canal is attested for the first time (at least according to the published documentation) in Nabonidus year 10 (Straßmaier 1889a, No. 483 : 7).
Second- and First-Millennium BC Rivers in Northern Babylonia

thereafter. According to a text dated to the 10th year of Nabonidus, the Nār-šarri came close to and perhaps even joined the Tigris, much as the old Main Branch of the Purattum had done in the first half of the second millennium.

Besides the Nār-šarri, another major canal, called the Nār-Šamaš, is attested in documents from Sippar beginning in the late seventh century. It flowed directly eastward from the left bank of the Purattu, leaving the river just below Sippar, and followed a course that seems to have coincided with that of the waterway designated tappištum on the much older map of the region. The Nār-Šamaš, like the Nār-šarri, was an artificial canal, which is proven by the existence of a sluice-gate at its opening. A watercourse designated ḫarišu (‘cutoff’) left the Nār-šarri near one of Sippar’s city-gates and joined the Nār-Šamaš, apparently near the latter’s point of departure from the Purattu. This watercourse could have made use of the relief which later became the alignment followed by the canal whose imposing remains are still visible along the southwest side of Sippar (see Map 9).

According to GIBSON (1972, 50), in the Neo-Babylonian period there was apparently much settlement along the old channel through Kutha, with several new towns established along it. This was also now an artificial watercourse. Nebuchadnezzar claims in several inscriptions that he worked on the quay of the ‘Kutha Canal’ (ḫiriti G.U.DU₄.A.KI) in connection with his work on Emeslam, the temple of Nergal at Kutha. We can assume, therefore, that other attestations of either the ‘Kutha Canal’ or the ‘Old Kutha Canal’ in Neo-Babylonian and Achaemenid-period

176 OBERMEYER 1929, 163-164, and map in fine (“Babylonien im Zeitalter des Talmuds und des Gaonats”).
177 STRASSMAIER 1889a, No. 483 : 7-8. Note that in the early second century BC, Seleucia was said to be on both the Nār-šarri and the Tigris (SACHS and HUNGER 1989, 385 No. -181 r. 9-10, 415 No. -178 r. 22’, and 441 No. -171 B upper edge).
178 The date of the first attestation of Nār-Šamaš in texts published thus far seems to be Nabopolassar year 18 (PINCHES 1898, 14d).
179 Compare JURSA 1995, 204.
180 Published in THOMPSON 1966, Pl. 49, and republished by L. De Meyer in GASCHE and DE MEYER 1980, 6 (on the Old Babylonian origins of this map, see n. 114 above). A Neo-Babylonian attestation of the term tappištum is found in PINCHES 1982a, No. 768 : 6.
181 PINCHES 1982, No. 403 : 3-4.
182 STRASSMAIER 1889a, Nos. 351 and 781 ; idem 1890, No. 92 ; BM 67096 ; etc. (JURSA 1995, 66-70, and M. Jursa, personal communication).
183 The gardens of the rab banê which are said by Jursa to have been located on the Purattu and ḫarišu at the beginning of the reign of Nebuchadnezzar and on the Nār-Šamaš and ḫarišu afterwards (JURSA 1995, 66-70, and 205 s.v. Purattu) may have been situated at the point where all three watercourses joined. It is not necessary, therefore, to assume that the Purattu was later called the Nār-Šamaš.
184 Most of these settlements, however, are situated on appendages of the main levee (see Map 9).
185 LANGDON 1912, 108 ii 56 ; 170 B vii 59 ; 182 ii 51.
documents also refer to the canal through Kutha repaired by Nebuchadnezzar. But the texts mentioning the ‘Old Kutha Canal’ are all dated at Babylon,188 and several of them even state explicitly that it was located opposite the Ištar Gate;189 therefore this was not the canal flowing past the city of Kutha itself, leaving the ‘Kutha Canal’ as the only possible candidate. The latter is attested both in texts from the region of Babylon190 and in documents from Nippur.191 It is possible that the texts from the region of Babylon refer to estates held by local elites along the canal through Kutha,192 especially along its uppermost course, close to where it left the Purattu some 32 km north of the capital. This location would generally agree with the testimony of later Arab geographers and others, who situate Kutha on the N̄eżīr Kùthā, as expected, and locate the mouth of the canal three parasangs below the N̄ežīr Malkā.193 The fact that the ‘Kutha Canal’ occurs in the same context as the Tigris in PINCHES (1982b, No. 207: 2’-6’) also argues against locating the former near Babylon during NB-Achaemenid times. A ‘Kutha Canal’ is also attested in Murasû documents from Nippur.194

The main branch of the river from which the Kutha Canal originated, down through the capital and on to Dilbat,195 was called the Purattu or IDU\textsubscript{D}KIB.NUN.KI in administrative documents and commemorative inscriptions, as well as the Arahtu, the old name of the channel, in the royal inscriptions of some Neo-Assyrian and Neo-

188 Attestations from the second half of sixth century through the early fifth include the following: STRASSMAIER 1889a, No. 973; \textit{idem} 1890, Nos. 320, 323, 346; \textit{idem} 1890a, No. 179; \textit{idem} 1897, Nos. 171, 287; BM 59568. Attestations in texts dated elsewhere: \textit{idem} 1890a, No. 217 (Paširi); \textit{idem} 1897, No. 332 (KÁ IDUD.A.KI) and No. 426 (URUDUD.A.KI-la-bi-ri).

189 E.g., BM 59568: 1-2: \textit{meḥrat abul} dIštar pīšāt TIN.TIR.KI (see GEORGE 1992, 341). It is topographically impossible that this canal flowed northeast from Babylon to Kutha, as VAN DRIEL has posited (1988, 126-127).

190 None are apparently dated at Babylon itself. Attestations (all second half of the sixth century) include: STRASSMAIER 1889a, No. 1102 (Bit-Šar-Babili); \textit{idem} 1897, No. 102 (Province of Babylon); and perhaps PINCHES 1982b, No. 207.

191 Attestations of the Kutha Canal in fifth-century texts from Nippur include: HILPRECHT and CLAY 1898, No. 106; CLAY 1904, Nos. 24, 50; \textit{idem} 1912a, Nos. 12, 22, 83, 101, 215; DONBAZ and STOLPER 1997, No. 16.

192 Just as temple officials from Kutha could hold lands on the Purattu in the Seleucid period (CLAY 1912, No. 88). The ‘king’s outlet’ (māṣū ša šarrī) and ‘Babylon dam’ (kilūtu ša TIN.TIR.KI) mentioned in connection with ID.G Trường D.UD.A.KI[ša pīšāt?] TIN.TIR.KI in STRASSMAIER 1889a No. 1102, a text dated at Bit-Šar-Babili, perhaps refer to canal works upstream where the Kutha Canal left the Purattu (contra UNGER 1970, 102). It is also possible that ID.G Trường D.UD.A.KI is an abbreviation of ID.G Trường D.UD.A.KI la-bi-ri, both here and in STRASSMAIER 1897, Nos. 102 and 332.

193 OBERMEYER 1929, 278-280, and map in fine. EL-SAMARRAĪ (1972, map on p. 14) shows a more accurate trajectory for the N̄ežīr Kùthā but places the mouth of the N̄ežīr Malkā too far north.

194 ZADOK 1978, 279-280.

195 For evidence of the Purattu at Dilbat already in the ninth century, see BRINKMAN 1995, 23, and n. 40 (citing VS I No. 35). This is not a serious complication (as suggested by Brinkman), because the river was simply following the line which it had taken in the first half of the second millennium.
Second- and First-Millennium BC Rivers in Northern Babylonia

Babylonian kings. Sometime before 702 BC a canal known as the Banītu was dug from the Purattu at Babylon to supply Kish, which lay directly east of the capital, because the old north-south line through Kish had been discontinued. It is uncertain whether this canal continued along the important levee which runs almost due east of Kish and then turns southeast. If so, the stretch east of the city may have been known by the old Sargonic name, 'River of Kish,' which is mentioned in documents from Babylon dating between the mid-seventh and mid-sixth centuries. It was undoubtedly along the levee of the Banītu Canal (and the stretch due east) that the later Shatt an-Nil or Nēhar Sūrā flowed.

Pallukkatu (Map 9)

A watercourse called the Pallukkatu is attested from the reign of Neriglissar on. From the perspective of Sippar, the Pallukkatu was situated across the Purattu, that is, to the west of it. This is proven by the mention of the village Āl(u-ša)-Šamaš ša nēberti Puratti in BM 63900, which can be identified with the Āl(u-ša)-Šamaš ša ina muḫḫi Pallukkat in STRASSMAIER 1889a, No. 448, etc. Because of topographical constraints, the channel must have departed from the Purattu somewhere west of Sippar, but certainly not at Fallūghah as has been commonly suggested. Therefore it could only have followed the modern course of the Euphrates between the Iskandarīyah Terrace and the western desert. We cannot yet determine precisely when the bed of the

196 BRINKMAN 1995, 22. Araḥtu occurs in NB administrative documents only in reference to the toponym GARIM Araḥtu near Borsippa (see, e.g., COLE 1994, 107).
197 WALKER 1981, 64 No. 75; see BRINKMAN 1995, 22, and n. 29.
198 GIBSON 1972, 50.
199 Attested at Nippur (WESTENHOLZ 1975, No. 24 ii 7).
200 ID.KIS.KI or ID.URU.KIŠ.KI (CONTENAU 1927, No. 11 : 4, 6; STRASSMAIER 1889, No. 330 : 2; idem 1889a, No. 65 : 6; BM 36347 : 7; cited by BRINKMAN 1995, 22, n. 29). This may have been the offlake from the Banītu granted to Nippur by Sennacherib, which apparently was not functioning during the reign of his successor, Esarhaddon (see HARPER 1892-1914, No. 327). If this watercourse continued on to Nippur, it is probably to be identified with the Purat-Nippur, which is attested first in 527 BC and frequently thereafter (ZADOK 1978, 278-282).
201 OBERMEYER 1929, 283-284.
202 EVETTS 1892, Nos. 3, 4, and 70.
203 Contra VAN DRIEL (1988, 128), who states that "[a] left bank canal on the line of the Isa- or Saqlawiah-canal seems much more sensible..."
204 We owe this observation to M. Jursa, who kindly shared with us his knowledge of the Sippar landscape and also evidence from unpublished NB texts in the British Museum.
205 The specific area is shown on Map 9. This terrace is probably mentioned in a text from the reign of Nabonidus, which describes the upper course of the channel as extending "from the mouth of the Pallukkatu, as far as New Town, (and) as far as the mountain" (STRASSMAIER 1889a, No. 506 : 2-3).
Fig. 1. Aerial view of the large loop south of Seleucia illustrating the shift of river meanders. SPOT 1990.
Fig. 2. Aerial view (1975) of two fossil meanders (M) — located southeast and northeast of Tell ed-Dér — representing vestiges of the ancient Main Branch of the Euphrates. The meander southeast of ed-Dér was investigated by BAETEMAN (1980, 18-20). Due to cultivation these features are nowadays visible only from above, but CHESNEY (1969, 56 and map VII), LOFTUS (1871, 15-16), and BEWSHER (1867, map after p. 161) could still detect these old channels in the field in the course of their survey activities (see also Figs. 3 and 4 of GASCHÉ and DE MEYER 1980).
Fig. 3. Aerial view of a typical system of disused irrigation canals that took off from the main channel lying on the levee of the old Main Branch of the Puratum (here south of Seleucia).

Fig. 4. Heads of disused irrigation canals near Sippur which tapped their water from a probable meander of the old Main Branch of the Puratum (or the canal which replaced it). See Map 4 for the location of this probable fossil meander NNW of Abu Jabbah/Sippur.
Second- and First-Millennium BC Rivers in Northern Babylonia

Fig. 5. Excerpt from Ptolemy’s “Qvarta Asiae tabula continet Cyprum & Syrium & Iudea & Vtraq. Arabia petream & deserta ac Mesopotamia & Babilonia.” From Ptolemy’s Cosmographia, Ulm, 1482, Leonardus Holle; designed by the Benedictine monk Donnus Nicolaus Germanus. Compare Fig. 6 (see also n. 60 above).
Fig. 6. Excerpt from Philippe de La Rue’s “Assyria Vetvs Diuina in Syriam, Messopotamiam, Babyloniam et Assyriam,” which was first published in 1651 as an addition to his Atlas “La Terre Sainte en six cartes géographiques.” Note that the course of the Euphrates is divided into several branches and that this pattern of distribution is very similar to the one shown on our Maps 8 and 9. It should be noted that La Rue’s map does not reflect the geographical reality of the mid-17th century but rather a historical situation which has been reconstructed from older documents, of which Ptolemy’s works (see Fig. 5) are probably the most important (see also n. 60 above).
Map 1. The system of levees in the project area and in the region E of the Tigris (agglomerating all periods). Various sources. The larger inset shows the area covered by Maps 5, 6, and 7, while the smaller one shows the area covered by Map 4. Interval contour lines W of the Euphrates: 5 m. M = fossil meander (Gasche); PM = probable fossil meander (Gasche); MA = meander mapped by ADAMS (1972, 201); because they require further investigation, not all the meanders mapped by ADAMS (1972) are shown here. Generated from a combined Microstation and Access database by K. Verhoeven; © IPA 4/25, Univ. of Ghent.
Map 2. The present drainage system in the project area according to Map 1. Interval contour lines W of the Euphrates: 5 m. Generated from a combined Microstation and Access database by K. Verhoeven; © IPA 4/25, Univ. of Ghent.
Map 2bis. The present drainage system with arrows indicating the direction of flow. Generated from a combined Microstation and Access database by K. Verhoeven; © IPA 4/25, Univ. of Ghent.
Map 3. The project area with the system of levees (from Map 1) and the location of all known archaeological sites regardless of their periods of occupation, which extend from Ubaid to Islamic times (from unpublished surveys of the Belgian Arch. Exp. to Iraq, ADAMS 1972, and GIBSON 1972). Note the geographical relation between levees and sites, taking into account that a large percentage of settlements were not located directly adjacent to ancient river courses, but were spread over their levees, mainly along canals built upon them (see Map 4 for an illustration of this).

Only a few sites are located in the deeper part of the basins, but it should be noted that ancient settlements can be totally covered by alluvial sediments (Ra's al-'Amiya, for ex.; see also GEYER and SANLAVILLE 1996, 401). Generated from a combined Microstation and Access database by K. Verhoeven ; © IPA 4/25, Univ. of Ghent.
Map 4. Abandoned irrigation network and sites in the area of Abū Habbah and Tell ed-Der (agglomerating all periods). One should take note of the 'wheat-ear' arrangement of the canals on either side of the levee upon which Tell ed-Der is found; the majority of these canals tapped their water from a meandering channel that belonged to one of the later stages of the old Main Branch of the Euphrates. According to the periods of occupation of the sites along them, some of them could have been in use already in the Achaemenid period, if not earlier. M = fossil meander; PM = probable fossil meander. Generated from a combined Microstation and Access database by K. Verhoeven; © IPA 4/25, Univ. of Ghent.
Second- and First-Millennium BC Rivers in Northern Babylonia

Map 5. Reconstruction of the district of Sin according to the Cadastre of Ur-Nammu (KRAUS 1955, 46-47 A ii 24-iv 26), showing the principal toponyms of the district and their approximate locations (compare STEINKELLER 1980, 33). Concerning the reconstruction of the river lines, see the caption of Map 8. Generated from a combined Microstation and Access database by K. Verhoeven; © IPA 4/25, Univ. of Ghent.
Map 6. Reconstruction of the Sippar(-serim)-Mankisum segment of the Old Babylonian itineraries (GOETZE 1953, 51 i 11-19; HALLO 1964, 63 obv. 5-9). Concerning the reconstruction of the river lines, see the caption of Map 8. The waterway between the Main and Kish Branches of the Euphrates just west of Sippar-şerim is situated on a levee that may have been built up by a natural watercourse running here before the two branches bifurcated further to the northwest and is a feature that could well be represented on the OB map of Sippar and its vicinity published in GASCHE and DE MEYER 1980, 6, Fig. 3. Generated from a combined Microstation and Access database by K. Verhoeven; © IPA 4/25, Univ. of Ghent.
Second- and First-Millennium BC Rivers in Northern Babylonia

Map 7. Principal toponyms mentioned in connection with the Battle of Ḫirillum during the time of Hammurabi and Zimri-Lim (compare LACAMBRE 1997). Concerning the reconstruction of the river lines, see the caption of Map 8. For the reconstructed watercourse just west of Sippar, see the remarks in the caption of Map 6. Generated from a combined Microstation and Access database by K. Verhoeven; © IPA 4/25, Univ. of Ghent.
The River Network of Northern Babylonia in the First Half of the Second Millennium BC

Survey No.

Site Size Occupation Periods

K1 A1

T. Ashšar

Late Larsa, Old Babylonian, Parthian/Sassanian and Islamic (DAMERGI 1986, 11)

K1 A2

Abî Qubîr North

Akkadian (probably less than 1 ha), Ur III (?), Isin-Larsa (DE MEYER and GASCHE 1986, 20-23); Neo-Babylonian (mixed with earlier material) is only attested in a water-deposited sandy/gravelly thick layer found at the southern edge of the North mound.

K1 A2

Tell-Dûr

± 50 ha

(Ur III to Old Babylonian (GASCHE 1978; 1984; 1989), Kassite (idem 1991), Neo-Babylonian (not yet attested in excavations, but see LANGDON 1915, 114-115 in 26-69 for the reconstruction of the ESILMAS by Nabonidaus). Seleucid (GASCHE 1996a), Parthian/Sassanian (idem 1978, 108-119), and later graves.

K1 A2

Abî Habbah

± 96 ha

(Ur III, Isin-Larsa, Old Babylonian, Kassite through Post-Ilkhanid (GIBSON 1972, 118-122).

K1 A2

A102

No name

60 diam. x 2

(Ur III, Isin-Larsa, Old Babylonian, Kassite to Parthian.

K1 A2

A120

Isšan Mugaffahshah

120 diam. x 2.5 m

(Ur III, Isin-Larsa, Old Babylonian, through Late Abbasid.

K1 A2

A126

Tâbor Arsâs

500 x 400 x 2 m

(Ur III, Isin-Larsa, Old Babylonian, through Late Abbasid.

K1 A2

A133

Tâshara

60 diam. x 0.5

(Ur III, Isin-Larsa, Old Babylonian, through Late Abbasid.

K1 A2

A149

T. Uqair

-

(Ur III, Isin-Larsa, Old Babylonian, through Late Abbasid.

K1 A2

A166

Isšan Hamîd

Min. 130 diam. x 7 m

(Ur III, Isin-Larsa, Old Babylonian, through Late Abbasid.

K1 A2

A217

Shurah

100 diam. x 1 m

(Ur III, Isin-Larsa, Old Babylonian, through Late Abbasid.

K1 A2

K1-24

Kish

± 255 ha 4

(Ur III, Isin-Larsa, Old Babylonian, through Late Abbasid.

K1 A2

K26

T. Nimrud

200 x 200 x 5 m

(Ur III, Isin-Larsa, Old Babylonian, through Late Abbasid.

K1 A2

K28

A181

T. Murîsh

Complex of mounds covering an area of ± 1000 x 750 m

K1 A2

K31

A182

Abî Dîshâh

100 x 100 x 2 m

K1 A2

K37

A195

Isšan Miziyad

1000 x 600 x 4 m

K1 A2

K39

A193

Abî Ajrash

300 x 200 x 4 m

K1 A2

K48

A140

T. Ibrahim

± 2000 x 1000 x 5 m

K1 A2

K54

A191

Tell Khalfašt

100 x 120 x 1 m

K1 A2

K70

- Isšan al-Khazna

250 x 230 x 5.5 m

K1 A2

K91

A202

No name

230 x 150 x 2.5 m

K1 A2

K93

A204

Jendar Ubdâd

200 x 170 x 4 m

K1 A2

K97

A213

Umm al-Jirâ

700 x 300 x 4.5 m

K1 A2

K120

- Abî Hejîl

200 x 100 x 5.6 m

K1 A2

K128

- Babylon

± 975 ha 5

K1 A2

K155

A206

Isšan Khazfa

200 x 150 x 4 m

(Kish Survey (GIBSON 1972). When a site was visited by both Adams and Gibson, we cite the data of Gibson.

1) Kish Survey (GIBSON 1972). When a site was visited by both Adams and Gibson, we cite the data of Gibson.

2) Akkad Survey (ADAMS 1972).

3) GIBSON's (1972) cites No. 1 to 24 (including the areas between them) cover about 253 ha. The group of tells constituting site No. 25 (Isšan al-Khazna, Islamic), covers another 8.5 ha.

4) The largest extension in Neo-Babylonian times (outer city-wall including Babil [= Gibson's No. 1271) cover 975 ha, cf. GASCHE and DE MEYER 1986.

5) Orthography used by ADAMS (1972) and/or GIBSON (1972).
Map 8. The river network of northern Babylonia in the first half of the second millennium BC (compare Map 10). Most of the river lines are drawn schematically according to the location of the identified fossil meanders (see Map 1). For the reconstructed watercourse just west of Sippar, see the remarks in the caption of Map 6. Sites with initial occupations dated by Adams (1972) to the Old Babylonian period are not mapped here (see nn. 2 and 10). The sites shown are those surveyed by Adams and/or Gibson, unless otherwise stated. Generated from a combined Microstation and Access database by K. Verhoeven; © IPA 4/25, Univ. of Ghent.

057 = Site probably founded during Ur III, Isin-Larsa, or Old Babylonian times.
092 = Site re-occupied during Ur III, Isin-Larsa, or Old Babylonian times after a long gap.
053 = Site occupied more or less continuously before and during Ur III times, as well as during Isin-Larsa and/or Old Babylonian times.
The River and Main Canal Network of Northern Babylonia in the First Half of the First Millennium BC

<table>
<thead>
<tr>
<th>Survey No. K</th>
<th>Site</th>
<th>Size</th>
<th>Occupation Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>A155</td>
<td>No name</td>
<td>110 x 80 x 2.5 m</td>
<td>Neo-Babylonian, Achaemenid.</td>
</tr>
<tr>
<td>A167</td>
<td>Kharij Jaddas*</td>
<td>150 diam. x 6 m</td>
<td>Neo-Babylonian to Parthian.</td>
</tr>
<tr>
<td>A128</td>
<td>T. Mekhar*</td>
<td>140 x 50 x 2.5 m</td>
<td>Neo-Babylonian.</td>
</tr>
<tr>
<td>A129</td>
<td>No name</td>
<td>180 x 40 x 3.5 m</td>
<td>Neo-Babylonian, Achaemenid.</td>
</tr>
<tr>
<td>A160</td>
<td>No name</td>
<td>120 diam. x 3 m</td>
<td>Neo-Babylonian, Achaemenid.</td>
</tr>
<tr>
<td>A163</td>
<td>T. Abdullah*</td>
<td>250 diam. x 5.5 m</td>
<td>Neo-Babylonian, Achaemenid.</td>
</tr>
<tr>
<td>A164</td>
<td>T. Rastak Kaban*</td>
<td>220 x 180 x 6 m</td>
<td>Neo-Babylonian to Parthian.</td>
</tr>
<tr>
<td>A165</td>
<td>T. Abu Dhabah*</td>
<td>700 x 200 x 3.5 m</td>
<td>Neo-Babylonian, Achaemenid, limited Parthian.</td>
</tr>
<tr>
<td>A206</td>
<td>No name</td>
<td>130 x 80 x 1 m</td>
<td>OB (?) to Neo-Babylonian, Achaemenid.</td>
</tr>
<tr>
<td>A218</td>
<td>T. Maihak Imam Securities*</td>
<td>400 x 200 x 8 m</td>
<td>Neo-Babylonian.</td>
</tr>
<tr>
<td>A219</td>
<td>No name</td>
<td></td>
<td>May minor summits may extend for more than 500 m.</td>
</tr>
<tr>
<td>K1-24</td>
<td>Kish</td>
<td>± 255 ha</td>
<td>Uruk (OB) (?), Kassite, Neo-Babylonian, Achaemenid through Late Abbasid.</td>
</tr>
<tr>
<td>A103</td>
<td>No name</td>
<td></td>
<td>Uruk or Uruk, Neo-Babylonian, Achaemenid/Seleucid.</td>
</tr>
<tr>
<td>K12</td>
<td>No name</td>
<td>250 x 150 x 3 m</td>
<td>Primarily Uruk to ED III, Kassite, Neo-Babylonian, Achaemenid/Seleucid.</td>
</tr>
<tr>
<td>K13</td>
<td>T. Abu Arash*</td>
<td>300 x 200 x 4 m</td>
<td>Uruk (?), Old Babylonian, Kassite, Neo-Babylonian to Parthian.</td>
</tr>
<tr>
<td>K48</td>
<td>T. Ibrahim* (Kutha)</td>
<td>± 2000 x 1000 x 8 m</td>
<td>Uhr through Kassite, Neo-Babylonian, Achaemenid through Late Abbasid.</td>
</tr>
<tr>
<td>K54</td>
<td>T. Khalfa*</td>
<td>100 x 120 x 1 m (Main mound)</td>
<td>Ur-Ula to Kassite, Neo-Babylonian, Achaemenid/Seleucid.</td>
</tr>
<tr>
<td>K7a</td>
<td>T. Alvijak*</td>
<td>150 x 300 x 2.5 m</td>
<td>Neo-Babylonian to Parthian, with Sasanian traces.</td>
</tr>
<tr>
<td>K6</td>
<td>T. Al-damyn*</td>
<td>250 x 150 x 3.5 m</td>
<td>Neo-Babylonian to Achaemenid/Seleucid.</td>
</tr>
<tr>
<td>K60</td>
<td>No name</td>
<td>200 x 230 x 1.5 m</td>
<td>Neo-Babylonian, Sassanian, limited Late Abbasid.</td>
</tr>
<tr>
<td>K66</td>
<td>No name</td>
<td>± 1000 x 50 x 1.1-1.5 m</td>
<td>Neo-Babylonian, Parthian (?), Sassanian (?), and Sassanian.</td>
</tr>
<tr>
<td>K80</td>
<td>No name</td>
<td>150 x 150 x 2.5 m</td>
<td>Sassanian.</td>
</tr>
<tr>
<td>K82a</td>
<td>No name</td>
<td>200 x 250 x 2.5 m (b)</td>
<td>ED III, Kassite, Neo-Babylonian, Achaemenid/Seleucid.</td>
</tr>
<tr>
<td>K82b</td>
<td>No name</td>
<td>100 x 100 x 1.5 (c)</td>
<td>ED II, Kassite, Neo-Babylonian, Achaemenid/Seleucid.</td>
</tr>
<tr>
<td>K81</td>
<td>T. Barshuhat* (Girum)</td>
<td></td>
<td>Neo-Babylonian, Achaemenid to Late Abbasid.</td>
</tr>
<tr>
<td>K109</td>
<td>T. Chehab zm-Nahr*</td>
<td>150 x 70 x 3.4 m</td>
<td>Uruk, Neo-Babylonian, Achaemenid/Seleucid.</td>
</tr>
<tr>
<td>K115</td>
<td>T. Abu Rothan*</td>
<td>100 x 200 x 5 m</td>
<td>Neo-Babylonian, Achaemenid to Parthian, slight Islamic occupation.</td>
</tr>
<tr>
<td>K122</td>
<td>T. El-Farrinas*</td>
<td>150 x 150 x 9-10 m</td>
<td>Neo-Babylonian, Sassanian.</td>
</tr>
<tr>
<td>K127</td>
<td>Bahri*</td>
<td></td>
<td>ED to Old-Babylonian sherds may indicate an earlier occupation. Neo-Babylonian to Parthian, Sassanian sherds rare.</td>
</tr>
<tr>
<td>K128</td>
<td>Babylon</td>
<td>± 975 ha</td>
<td>Not collected systematically. ED III through Kassite, Neo-Babylonian, Achaemenid through Late Abbasid.</td>
</tr>
<tr>
<td>K148</td>
<td>Liman al-Ashul*</td>
<td>400 x 150 x 5 m</td>
<td>ED to Achaemenid, Neo-Babylonian to Seleucid, Late Abbasid and Elkhidr.</td>
</tr>
<tr>
<td>K155</td>
<td>T. Ishah Khasfa*</td>
<td>200 x 150 x 4 m</td>
<td>Old Babylonian (?), Kassite, Neo-Babylonian, Achaemenid to Parthian.</td>
</tr>
</tbody>
</table>

* Orthography used by ADAMS (1972) and/or GIBSON (1972).
1) Kish Survey (GIBSON 1972). When a site was visited by both Adams and Gibson, we cite the data of Gibson.
2) Akkad Survey (ADAMS 1972).
3) All data that concern sites from Akkad Survey No. 064 to 219 refer to ADAMS 1972, 193-204.
4) GIBSON’S (1972) sites Nos. 1 to 24 (including the areas between them) cover about 255 ha. The group of tells constituting site No. 25 (Ubaid al Khazna, Islamic) covers another 8.5 ha.
5) The largest extension in Neo-Babylonian times (outer city-wall including Baht) (cf. GIBSON'S No. 127) cover 975 ha, cf. GASCHKE and DE MEYER 1986.
Map 9. The river and main canal network of northern Babylonia in the first half of the first millennium BC. Because further investigation is needed, the course of the Tigris is not reconstructed on this map. The sites shown are those surveyed by Adams and/or Gibson, unless otherwise stated. Generated from a combined Microstation and Access database by K. Verhoeven; © IPA 4/25, Univ. of Ghent.

T. Aswad. 053 = Sites probably founded during Neo-Babylonian times.
064 = Site re-occupied in Neo-Babylonian times after a long gap.
057 = Site occupied more or less continuously before and during Neo-Babylonian times.
Map 10. The river network of northern Babylonia according to TAVO, Map B II 12.1 (Mesopotamien in altbabylonischer Zeit: Besiedlung), including sites dated to the Larsa and Old Babylonian periods by ADAMS (1972) and/or GIBSON (1972). Compare Map 8.

Note the way the watercourses are reconstructed. They are represented by lines connecting sites thought to be contemporaneous (concerning the sites dated to the Old Babylonian period by ADAMS [1972], see our n. 2) in disregard of both the relief and the fact that not all contemporaneous sites necessarily have to be situated alongside an old river (see Map 4 for an illustration of the distribution pattern of sites).
Second- and First-Millennium BC Rivers in Northern Babylonia

Pallukkatu was replaced by the bed of the Euphrates, but it is quite clear that the latter followed the path opened by the former.

According to Arrian, the Pallakottas (= Pallukkatu) was flowing west of Babylon by the time of Alexander. It has even been argued that the large morass near Borsippa attested from the eighth century on was created and sustained by waters from a westerly channel such as the Pallukkatu, and that this channel was being used as an escape for excess Euphrates discharge. By the Seleucid era, the mouth of the Pallukkatu could be closed to raise the level of the river at Babylon, which shows that the Pallukkatu was still a canal.

7. CONCLUSION

We have concentrated on the reconstruction of the river network of northern Babylonia because this region was (and still is) the critical zone of departure for the various Euphrates branches that supplied water to regions further south. Our research program will progressively consider other areas of the floodplain, including the region to the east of the modern bed of the Tigris and that to the south and southeast of ancient Babylon and Kish.

Our approach differs fundamentally from previous attempts to reconstruct the watercourses of Babylonia in the symmetry of its reliance on data drawn from the fields of geomorphology, archaeology, and philology. The results presented herein would have been unachievable by any other method.

We began with the physical remnants of old river branches — that is, their fossil levees (and fossil meanders) — which, because of their relief, can be mapped. Such levees, once they attained a certain height, from then on became the basic conduits of irrigation on the Babylonian plain, and the system of levees became its permanent infrastructure. Even when the natural watercourses left their channels, the levees remained and could be used as platforms for secondary canals. Other physical evidence — specifically that resulting from dike-building activities around several large sites — indicates that not only were there rivers or river branches near these sites, but also that there were seasonal inundations of unusual severity at times, even if some current reconstructions of climatic conditions point to low precipitation and/or relative dry conditions.

206 Anabasis Alexandri VII 21.1-4 (= Brunt 1983, 277-279). On palaeographic grounds, Meissner (1896, 7, n. 3) emended ἡλίασκείπτες in the manuscript tradition of the Arrianus text to ἡλλιασκείπτες, which is the correct lectio found in Appianus (we thank L. De Meyer for this observation and refinement).
208 T. Boiy and K. Verhoeven (in this volume), citing evidence from the astronomical diaries.
Once the basic physical network of levees was established, the use of textual information to identify the various ancient river branches was placed on a more secure and objective basis. And although not all the identifications made herein are completely certain, we believe that until additional evidence is uncovered, the overall results of this investigation can serve as a solid, reliable basis for further studies of ancient Babylonian hydrography.

BIBLIOGRAPHY

AKHMAD MALEK AL-FATYAN, ZOHAYR RADJAB ABDOLLAH, 1979: 7 years at Tell Aswad, Baghdad (Arabic).

Second- and First-Millennium BC Rivers in Northern Babylonia

Second- and First-Millennium BC Rivers in Northern Babylonia

DEKIERE, L., 1996: Old Babylonian Real Estate Documents, Part 5. Documents without Date or with Date Lost (= MHET 2/5), Ghent.
DILKE, O.A.W., 1985: Greek and Roman Maps, Ithaca NY.
DOSSIN, G., 1933: Lettres de la première dynastie babylonienne (= TCL 17), Paris.
EVETTS, B.T.A., 1892: Inscriptions of the Reigns of Evil-Merodach (B.C. 562-559), Neriglissar (B.C. 559-555) and Laborosoarchod (B.C. 555) (= BT 6B), Leipzig.

57

Second- and First-Millennium BC Rivers in Northern Babylonia

GAUTIER, J.-É., 1908: Archives d'une famille de Dilbat au temps de la première dynastie de Babylone. Le Caire.

GIBSON, McG., 1972: The City and Area of Kish, Coconut Grove.

HARPER, R.F., 1892-1914: Assyrian and Babylonian Letters Belonging to the K(ouyunjik) Collection(s) of the British Museum (14 vols.), Chicago.

JANSSEN, C., 1995: Bâbîl, the City of Witchcraft and Wine. The Name and Fame of Babylon in Medieval Arabic Geographical Texts (= MHEM 2), Ghent.

JURSA, M., 1995: Die Landwirtschaft in Sippar in neubabylonischer Zeit (= AfO Beih. 25), Horn.

LANGDON, S., 1912: Die neubabylonischen Königinschriften (= VAB 4), Leipzig.

LEEMANS, W.F., 1960: Foreign Trade in the Old Babylonian Period as Revealed by Texts from Southern Mesopotamia (= SDIOA 6), Leiden.

Second- and First-Millennium BC Rivers in Northern Babylonia

POEBEL, A., 1912: *Historical and Grammatical Texts (= PBS 5)*, Philadelphia.

RADAU, H., 1908: *Letters to Cassite Kings from the Temple Archives of Nippur (= BE 17/1)*, Philadelphia.

SCHEIL, V., 1902: *Une saison de fouilles à Sippar (Abou Habba), janvier-avril 1894*, Le Caire.

SCHROEDER, O., 1922: *Keilschrifttexte aus Assur historischen Inhalts II (= WVDOG 37)*, Leipzig.

SIMMONS, S.D., 1961: « Early Old Babylonian Tablets from Ḥarmal and Elsewhere (Continued) », *JCS* 15, 50-58.
Second- and First-Millennium BC Rivers in Northern Babylonia

SZLECHTER, É., 1963: Tablettes juridiques et administratives de la IIère dynastie d'Ur et de la 1ère dynastie de Babylone, Paris.
UNGER, E., 1970 [1931]: Babylon, die heilige Stadt nach der Beschreibung der Babylonier, Berlin (2nd ed.).
UNGNAD, A., 1908: Neubabylonische Kontrakten (= VS 5), Leipzig.
VAN DER MEER, P.E., 1938: Syllabaries A, B1 and B with Miscellaneous Lexicographical Texts from the Herbert Weld Collection (= OECT 4), London.
WATELIN, L.Ch., LANGDON, S., 1930 : Excavations at Kish 3, Paris.
WESTENHOLZ, A., 1975 : Early Cuneiform Texts from Jena, Copenhagen.
WILKINSON, T.J., 1990a : « The Canals of the Qādisiyya Area and the Changing Course of the Tigris », Iraq 52, 121-129.
ZADOK, R., 1978 : « The Nippur Region during the Late Assyrian, Chaldean and Achaemenian Periods Chiefly according to Written Sources », IOS 8, 266-332.
Dans les pages qui suivent nous proposons une étude du dossier d’un type de cours d’eau attesté dans les textes documentaires paleo-babyloniens: le namkarum, traduit par ‘irrigation canal’ dans les CAD et ‘Bewässerungskanal’ dans le AHw.

Notre choix s’est porté sur ce cours d’eau parce que nous croyons pouvoir le rattacher à des traces bien visibles et identifiables sur les cartes de détail établies dans le cadre du Pôle d’Attraction Interuniversitaire IV/25 sur base de la documentation topographique précise, de photos aériennes et d’imagerie satellite. Même sur certaines cartes datant du siècle dernier ces vestiges apparaissent clairement. En d’autres mots, nous tenterons de rapprocher les textes du terrain.

Qu’il soit clair d’emblée que cette entreprise a des limites. Si nous croyons pouvoir apporter des éléments sur la nature, la fonction et la fréquence des namkarums et si nous croyons pouvoir identifier des structures de ce type sur le terrain, nous ne pouvons — pour le moment — établir de lien entre tel namkarum dans un texte et telle levée sur le terrain.

Nous présenterons d’abord le dossier en examinant chaque attestation dans son cadre géographique. Les conclusions nous permettront ensuite de passer à la relation avec le terrain.

I. LE MOT ET SON SENS

Le mot namkarum, dont l’origine ne remonte pas plus haut que l’époque paléo-babylonienne, est en usage jusqu’au Babylonien tardif.

I.1. La formation

La formation du mot est simple: il s’agit d’une dérivation de la racine mkr qui signifie ‘inonder, irriguer’ à la forme mapras/napras.

* Université de Gand. Nous tenons à remercier L. De Meyer d’avoir bien voulu améliorer ce texte par ses remarques et critiques.

1 Ce dernier dictionnaire donne erronément m/spB comme périodes d’utilisation de ce mot, à compléter par aB.

2 Cfr la contribution de Cole et Gasche dans le présent volume.
Comme on pouvait s'y attendre pour un mot introduit si tard, les listes lexicales ne le mentionnent que peu. Deux références, toutes deux nécessairement post-paléo-babyloniennes donnent :

\[
\begin{align*}
ML 11, 28 & \quad \text{Hh XXII Section 8 : 8'} \\
LTBA 2, 2 : 302 & \quad \text{pa}_5.a.dug_4.ga = \text{nam-ga-ri} \\
& \quad \text{nam-ga-ru} = \text{mi-ik-ru}
\end{align*}
\]

La première référence décrit le *namkarum* comme un canal (pa₅) caractérisé par ses eaux où le dug₄ est une graphie variante de a.da.ga/a.du₁₁.ga = šaqû ša eqli (CAD Š II 24 s.v. šaqû lex. sect.). Le pa₅.a.dug₄.ga est donc un canal dont la fonction est d'irriguer les champs.

La deuxième référence donne une autre forme de la même racine *mkr* comme équivalent. *Mikru* signifie irrigation ou mise sous eau des champs.

1.2. Questions d'orthographe

La découpe en syllabes

Comme il s'agit d'un néologisme, sa tradition orthographique n'est pas encore bien établie et il est écrit de différentes façons. Cette hésitation dans l'orthographe montre qu'il n'y a pas de tradition, que les scribes découpent les syllabes chacun à sa façon :

<table>
<thead>
<tr>
<th>État construit</th>
<th>Nominatif</th>
<th>Génitif</th>
</tr>
</thead>
<tbody>
<tr>
<td>nam-kar</td>
<td>nam-ka-rum</td>
<td>nam-ka-ri</td>
</tr>
<tr>
<td>nam-ka-ar</td>
<td>nam-ka-ru-um</td>
<td>nam-ka-ri-im</td>
</tr>
<tr>
<td></td>
<td>nam-kar-ru-um</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nam-kar-rum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>na-am-ka-ru-um</td>
<td>na-am-ka-ri-im</td>
</tr>
</tbody>
</table>

Les formes les plus fréquentes sont l’état construit *nam-kar* (18 x AS-As) et le nominatif *nam-ka-rum* (13 x Sm-Ae) et 4 génitifs (Sm-Ad).

L’absence de ‘*nam-ka-rim*’ est normale, puisque la valeur ‘*rim*’ est exceptionnelle en paléo-babylonien, elle est toujours rendue par ‘*ri-im*’.

La découpe du premier ensemble CVC se fait rarement (MHET 163, 326, 627, 689) ; ces textes sont tous à dater avant et pendant le règne de Ha.

3 *CAD* s.v. ‘irrigation, flooding of fields (an irrigated or irrigable field)’, *AHw* : s.v. ‘Bewässerung’.
Le namkarum. Une étude de cas dans les textes...

La variante de l’état construit: nam-ka-ar est utilisée 6 x (Ḫa-As). Il s’agit souvent d’autres noms d’ugārum que ceux écrits avec nam-kar. Dans quelques cas les deux variantes sont employées pour le même namkarum :

MHET 189 (Ḫa 16): nam-ka-ar a-lim
CT 47, 62/62a (Si 9): nam-kar uru₃

Le scribe a clairement utilisé une graphie courte vs. une graphie syllabique/longue mais ce critère ne permet pas de départager toutes les attestations, cfr. p.ex. le ‘nam-kar šar-rum ḫutu’ (APR 74) où les deux sont mélangées mais où le scribe n’a sans doute pas voulu encore augmenter le nombre de signes.

Il ne semble pas non plus y avoir de raison contraignante pour écrire ‘nam-kar-rum ša a.gâr Tenûnam’ (CT 2, 37) ou ‘nam-ka-ar a.gâr Tenûnam’ (Di 386), vis à vis de la graphie ‘nam-kar Tenûna’ (Di 691) et de ‘nam-kar a.gâr Tenûnam’ (Di 680, Di 686, Di 700, MHET 332). Il s’agit évidemment de libres choix des scribes. Malheureusement il n’y a pas dans notre documentation de cas où nous pouvons contraster les différents usages par scribe.

1.3. Les scribes

Le scribe le plus fréquent est Ipiq-Aja, ayant écrit cinq de nos textes. Dans l’ordre chronologique :

Di 680 (Si 7) nam-kar a.gâr Tenûnam
JCS 11, 23, 9 (Si 9/7/6) na-am-ka-ar sanga ḫutu
CT 47, 62/62a (Si 9/12/1) nam-kar uru₃
MHET 427 (Si 14) nam-kar-rum
MHET 426 (Si 14) nam-kar Atânûm

L’on voit que si d’une part le scribe avait l’habitude d’écrire nam-kar-(rum) (au lieu de nam-ka-rum) il s’est évertué à remplir la cinquième ligne de JCS 11, 23 (Si 9). Mais pourquoi ne l’a-t-il alors pas fait dans CT 47, 62 (Si 9, tablette et enveloppe) ? Cela nous donne une idée de la marge de liberté des scribes.

Trois textes sont écrits par Ušur-wedam :

MHET 864 Si 5 nam-ka-rum
CT 6, 38a Si 8 nam-ka-rum
MHET 425 Si 13 nam-ka-ar Abâtîm/Atânûm

Pas de variantes ici mais une constance dans l’emploi de ‘namkarum’ comme indéclinable. Dans les deux premiers textes cités le mot est précédé par ‘itta’ et ‘ina gu’ respectivement, demandant le génitif.

Šûmun-lişî quant à lui est l’auteur de deux textes (Di 691, Aṣ 4 et APR 74, Aṣ 13) où il utilise de façon conséquente ‘nam-kar’, tout comme le fait Imgur-Sîn (Di 1952, Si 11 et Di 700, Si 21).
I.4. Accord ou pas accord

Le fait aussi que, d’une part, l’état construit est employé ou que namkarum est décliné, mais que, d’autre part, il y a des attestations où il est indéclinable, reflète une hésitation. Exceptionnellement, le mot est même précédé par un déterminatif: \textit{id} namkarum (Di 1458 Si).

Cette variante est visible dans la combinaison \textit{ita/ahi} + namkarum où namkarum est invariable ou mis au génitif:

\begin{verbatim}
\begin{tabular}{lll}
\textit{ita nam-ka-ru-um} & \textit{aḫi nam-ka-ru-um} & \textit{ita nam-ka-rum} \\
\textit{Ha 6} & \textit{Ha 17} & \textit{Si 5} \\
\textit{MHET 191} & \textit{MHET 864} & \textit{MHET 191} \\
\textit{ita \textit{id} nam-ka-rum} & \textit{ita nam-ka-rum} & \textit{ita nam-ka-rum} \\
\textit{Si [...] Di 1458} & \textit{Sm CT 47, 18} & \textit{Sm CT 47, 18} \\
\textit{Ha 17} & \textit{Ha 17} & \textit{Si 5} \\
\textit{MHET 191} & \textit{MHET 864} & \textit{MHET 864} \\
\textit{ita nam-ka-ri-im \textit{sa} Ibbi-Sin} & \textit{ita nam-ka-ri-im lablrim} & \textit{ita nam-ka-ri-im essim} \\
\textit{s.d.} & \textit{Sm CT 47, 13/13a} & \textit{Sm ibidem} \\
\textit{Ad 24} & \textit{Ad 24} & \textit{Ad 24} \\
\textit{CT 45, 50} & \textit{CT 45, 50} & \textit{CT 45, 50} \\
\end{tabular}
\end{verbatim}

I.5. Le namkarum dans les textes documentaires paléo-babyloniens de Sippar

La documentation paléo-babylonienne de Sippar contient le mot \textit{namkarum} dans 56 localisations de champs. La plupart des ces textes donnent le nom du district d’irrigation (\textit{ugārum}). Nous savons ainsi qu’il y a des \textit{namkarums} dans au moins 17 de ces districts.

Le tableau ci-dessous donne un aperçu des 56 attestations classées par \textit{ugārum}.

\begin{tabular}{|c|c|c|}
\hline
I & Ašukum & \\
\hline
1 & \textit{ita namkarim} & Ad 24 \\
2 & \textit{ita namkar dumu.meš Awił-Šamaš} & Aš 11/8/4 \\
\hline
II & Atanānum & \\
\hline
3 & \textit{ita namkar Abātim} & Si 13/9/10 \\
4 & \textit{sag.bi namkar (H)atānum} & ibidem \\
\hline
\end{tabular}

4 Afin d’éviter toute confusion de traduction, nous utiliserons toujours le mot accadien \textit{namkarum} (au pluriel \textit{namkarums}). Bien qu’en règle générale dans les traductions de textes nous sommes persuadé que c’est une pratique à éviter, dans le cas présent l’emploi de “canal d’irrigation” nous semble être pléonastique et source possible de confusion.
Le namkarum. Une étude de cas dans les textes...

<table>
<thead>
<tr>
<th>III</th>
<th>(ša) Binum</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>sag.1 namkarum</td>
<td>Sm</td>
</tr>
<tr>
<td>6</td>
<td>sag.2 namkar Abātum</td>
<td>s.d.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV</th>
<th>Eble</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>abi namkarum</td>
<td>AS</td>
</tr>
<tr>
<td>8</td>
<td>2 sag.bi namkarum</td>
<td>AS 13/2/xx</td>
</tr>
<tr>
<td>9</td>
<td>sag.1 namkar-(x)-x-x-a</td>
<td>Si xx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V</th>
<th>Gamānanum</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>sag.2 namkarum</td>
<td>s.d.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VI</th>
<th>uru Gula</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>namkar aga.uš.meš</td>
<td>Aš 16/5[]</td>
</tr>
<tr>
<td>12</td>
<td>idem</td>
<td>idem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VII</th>
<th>Ḫalḫalla</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>ita namkar uru gastrointestinal</td>
<td>Si 9/12/1</td>
</tr>
<tr>
<td>14</td>
<td>ita namkar [...]</td>
<td>Si 15/1[]</td>
</tr>
<tr>
<td>15</td>
<td>sag.1 namkas [...]</td>
<td>s.d. (Sm-[Ja]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VIII</th>
<th>‘dossier Ḫalḫalla’</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>sag.1 namkar Atānum (u.sal Euphrate)</td>
<td>Si 14</td>
</tr>
<tr>
<td>17</td>
<td>ita namkarum</td>
<td>Sm</td>
</tr>
<tr>
<td>18</td>
<td>ita namkarim</td>
<td>Ḫa 11</td>
</tr>
<tr>
<td>19</td>
<td>ina gū namkarum</td>
<td>Si 8</td>
</tr>
<tr>
<td>20</td>
<td>namkarum</td>
<td>[AS?]</td>
</tr>
<tr>
<td>21</td>
<td>sag.2 namkas [...]</td>
<td>Ḫa xx</td>
</tr>
<tr>
<td>22</td>
<td>ita namkarim labirin (envelope : šaplim)</td>
<td>Sm</td>
</tr>
<tr>
<td>23</td>
<td>ita namkarim eššim</td>
<td>ibidem</td>
</tr>
<tr>
<td>24</td>
<td>sag.1 namkarum</td>
<td>Sm 5?/6?</td>
</tr>
<tr>
<td>25</td>
<td>ita namkarum</td>
<td>Ḫa 6</td>
</tr>
<tr>
<td>26</td>
<td>sag.bi šaplitum namkar alîm</td>
<td>Ḫa 16</td>
</tr>
<tr>
<td>27</td>
<td>nam-kar[...] ??</td>
<td>Ḫa 14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VIII</th>
<th>Ḫarbañi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>ita namkar Abu-Ṭābūm</td>
<td>Aš 12/4/26</td>
</tr>
<tr>
<td>29</td>
<td>ita e namkar a.gār</td>
<td>Aš 6/1/26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IX</th>
<th>Ḫašārum</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>ita namkarum</td>
<td>Si 5/10/20</td>
</tr>
<tr>
<td>31</td>
<td>ita namkar sanga Šamaš</td>
<td>Si 9/7/6</td>
</tr>
<tr>
<td>31a</td>
<td>ina namkarsiša</td>
<td>Si 9/7/26</td>
</tr>
<tr>
<td>Numéro</td>
<td>Description</td>
<td>Lieu</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>32</td>
<td>pag. 2 en nomkar<rum> sa dumu.meš Sin-iddinam</td>
<td>Ac []</td>
</tr>
<tr>
<td>XI</td>
<td>Iskun-Ištar</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>pag. 2 namkar Ilšu-bānī</td>
<td>Si 11/12/1</td>
</tr>
<tr>
<td>XII</td>
<td>Lugal-sagila</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>ita namkaram ša Ibbi-Sîn</td>
<td>Ḫa 17</td>
</tr>
<tr>
<td>35</td>
<td>ita namkaram ša Ilbbi-Sîn</td>
<td>s.d.</td>
</tr>
<tr>
<td>36</td>
<td>ita namkaram ša Ilbbi-Sîn</td>
<td>s.d.</td>
</tr>
<tr>
<td>37</td>
<td>ita namkar ša Ilbbi-Sîn</td>
<td>s.d. (post Ḫa 17)</td>
</tr>
<tr>
<td>XIII</td>
<td>Maḫana</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>pag. 2 namkar</td>
<td>s.d.</td>
</tr>
<tr>
<td>XIV</td>
<td>Tawirūtum</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>pag. 1 namkaram</td>
<td>Si 14/5/3+</td>
</tr>
<tr>
<td>XV</td>
<td>Tenūnum</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>pag. 2 namkaram ša agar Tenūnum</td>
<td>Za</td>
</tr>
<tr>
<td>41</td>
<td>pag. 1 namkar agar Tenūnum</td>
<td>Si 7/12/20</td>
</tr>
<tr>
<td>42</td>
<td>namkar agar Tenūnum</td>
<td>Si 21/10/15</td>
</tr>
<tr>
<td>43</td>
<td>pag. 2 e namkar agar Tenūnum</td>
<td>Aš 4</td>
</tr>
<tr>
<td>44</td>
<td>pag. 2 namkar Tenūnum</td>
<td>Aš 4</td>
</tr>
<tr>
<td>45</td>
<td>e namkar agar Tenūnum</td>
<td>s.d.</td>
</tr>
<tr>
<td>46</td>
<td>pag. 1 namkar agar Tenūnum (2x)</td>
<td>Ḫa [] 4/18-19</td>
</tr>
<tr>
<td>XVI</td>
<td>Tābum</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>ita namkarim</td>
<td>Ac “k”</td>
</tr>
<tr>
<td>48</td>
<td>namkar Sarum-Samaš</td>
<td>Aš 13/1/3</td>
</tr>
<tr>
<td>XVII</td>
<td>0.1.3 iku</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>namkaram</td>
<td>Aš 1</td>
</tr>
<tr>
<td>50</td>
<td>namkar Ilši-ti[kalš]</td>
<td>Aš 11/1/22</td>
</tr>
<tr>
<td>XVIII</td>
<td>(sans nom)</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>ita Ilₜnamkaram</td>
<td>Si […]</td>
</tr>
<tr>
<td>52</td>
<td>ita namkarum</td>
<td>Ḫa 22</td>
</tr>
<tr>
<td>53</td>
<td>pag. 1 namkar agar</td>
<td>Si 2</td>
</tr>
<tr>
<td>54</td>
<td>adi namkari</td>
<td>Aš xx</td>
</tr>
<tr>
<td>55</td>
<td>ita namkarim</td>
<td>date cassée</td>
</tr>
<tr>
<td>56</td>
<td>pag. 1 namkaram gal ša ita Ilₜkûr</td>
<td>s.d. (post Ḫa 17)</td>
</tr>
</tbody>
</table>

⁵ Tablette : namkaram tout court ; enveloppe namkaram ša 1-lbbi-l [...].

⁶ MHET 584, CT 45, 111 et 113 (post Ḫa 17) sont des copies du même document : une liste d’achats de champs par la famille Aksaja. Tous les champs sont situés dans les environs de l’Irminia, de la grande digue (e gu-la) et des tawirūtum de Lugalsagina et de Ibbi-Sîn.
Le namkarum. Une étude de cas dans les textes...

Comme on l’aura remarqué, dans quelques cas il ne s’agit pas du namkarum même mais de sa digue ‘e namkarum’ : Ḫašārum, Ḫṣṣiātum et Tenūnām ; ou de son bord ‘gú namkarim’.

II. LA LOCALISATION DES UGĀRUMS

Puisque bon nombre de namkarums sont localisés dans des ugārums, il nous a semblé utile de rassembler des éléments permettant de localiser relativement ces ugārums et donc aussi ces namkarums.

Grâce au corpus de textes immobiliers paléo-babyloniens des deux Sippar, considérablement augmenté par les volumes MHET de L. Dekiere, grâce aussi aux nouvelles données contenues dans les archives d’Ur-Utu et de son père, nous disposons d’éléments que nous pouvons tenter de combiner avec les tracés de l’Euphrate et de l’Irnina établis par St. Cole et H. Gasche dans leur contribution au présent volume.

Selon la proposition de ces auteurs, en schématisant les données, le cours de l’Irnina est parallèle avec et au nord de l’Euphrate. Tous deux coulent d’ouest en est. Les eaux de l’Irnina proviennent de l’Euphrate et se déversent dans le Tigre. L’ensemble constitue un très schématique rectangle fermé dont le côté gauche est constitué par l’Euphrate dans son cours nord-sud, le droit par le Tigre, le supérieur par l’Irnina et l’inférieur par l’Euphrate.

Ce schéma général nous permettra de situer globalement un certain nombre d’ugārums. Notre point de départ sera formé par les textes MHET 870 (Si 16) et 894 (Ad 34) qui donnent des listes d’ugārums en précisant qu’ils appartiennent au territoire de Sippar-Amnānum (ina erṣet Sippar-Amnānum). Dans le cas de MHET 870 il est spécifié en plus qu’il s’agit de champs de l’autre côté de l’Irnina (bal.ri Irnina). Il va de soi que ces listes sont loin d’être exhaustives, le but de ces textes n’étant pas de donner une description cadastrale mais d’énumérer des champs distribués (sibtū) à des militaires de Sippar. Voici les données qui nous intéressent :

<table>
<thead>
<tr>
<th>MHET 894</th>
<th>MHET 870</th>
</tr>
</thead>
<tbody>
<tr>
<td>ina erṣet S-A</td>
<td>ina erṣet S-A bal.ri Irnina</td>
</tr>
<tr>
<td>Paḫuṣum</td>
<td>Ṭabu</td>
</tr>
<tr>
<td>Baṣi</td>
<td>Aṣ-suṣum</td>
</tr>
<tr>
<td>Buṣa</td>
<td>Diritum</td>
</tr>
<tr>
<td>Bura</td>
<td>Ḥagiānum</td>
</tr>
<tr>
<td>9 gān</td>
<td>Ṣa Gula</td>
</tr>
<tr>
<td></td>
<td>Ašukum</td>
</tr>
<tr>
<td></td>
<td>Kabiṣum</td>
</tr>
</tbody>
</table>
Le fait qu’il s’agit de deux listes d’ugārum s différents montre bien que l’addition ‘bal.ri Irnina’ dans MHET 870 est significative.

II.1. Trois régions deux eršētu

Comme Sippar-Amnānum et Sippar-Jahṛūrum se situent de deux côtés de l’Euphrate, la première au nord et la seconde au sud, nous proposons de comprendre par territoire (eršētu) de Sippar-Amnānum la région au nord de l’Euphrate (dans son cours ouest-est). La région au sud serait alors le territoire (eršētu) de Sippar-Jahṛūrum.

Sippar-Amnānum s’étendrait même encore plus loin, au-delà, au nord de l’Irnina, région appelée ‘eršet Sippar-Amnānum bal.ri Irnina’.

II.2. Un ordre de grandeur ?

Nous avons donc, dans MHET 894 une liste d’ugārum qui se situent dans le territoire de Sippar-Amnānum, entre l’Euphrate et l’Irnina selon notre hypothèse. MHET 870 quant à lui, donne quatre ugārum, également dans le même territoire mais au-delà de l’Irnina.

Les surfaces énumérées dans ces deux textes ne nous donnent malheureusement qu’une approximation minimale de l’étendue de ces ugārum. N’y sont indiquées que les surfaces des champs destinés aux militaires.

Pour Nagûm le texte est endommagé, ce qui reste donne déjà un total de 4.2.5 (= 32,04 ha). Le total pour Še.gi₆ est conservé : 3.2.2 1/2 iku (= 24,66 ha). Dans Merigat il y a 2.2.1 iku (= 17,64 ha). Dans Kabīrum il y a un seul grand champ d’attribué : 1.0.0 iku (= 6,48 ha).

MHET 894 donne un grand total pour les ugārum cités de 34.1.1 iku 10 sar. Si nous en soustrayons les surfaces situées dans les territoires des trois autres villes (Kullizu, Saddi et Š/Zarbatum), 0.2.4 iku + 2.2.0 iku 30 sar + 1.0.4 iku = 4.2.2 iku 30 sar, cela donne 29.1.4 iku 80 sar, soit 191,8 hectares de terres réservées aux militaires dans 14 ugārum entre l’Euphrate et l’Irnina.

Une très approximative estimation de la surface totale entre l’Irnina et l’Euphrate nous donne un ordre de grandeur de 13.500 ha. Rien ne permet, bien entendu, d’affirmer que cette surface entière était cultivable ou cultivée.

Nous remercions K. Verhoeven qui a exécuté ce calcul sur base du GIS.
II.3. Comme une rivière de diamants

Partant de ces premières listes nous pouvons tenter de localiser les autres *ugārums* dans lesquels un *namkarum* est attesté 8.

Un principe qui nous guidera dans cette recherche est que si un cours d’eau est attesté dans une des trois régions définies ci-dessus : au nord de l’Irmina, entre l’Irmina et l’Euphrate ou au sud de l’Euphrate, tout son cours sera nécessairement confiné à cette même région puisqu’il ne peut évidemment traverser ni l’Euphrate ni l’Irmina.

Conséquence logique et intéressante pour nous : tous les *ugārums* traversés par un cours d’eau se situent dans la même région que lui. Les *ugārums* sont comme les diamants qui s’enfilent l’un après l’autre sur la rivière.

Le Šabium

Notre première liste d’*ugārums* (*MHET* 894) nous donne e.a. Ašukum et Paḫuṣum entre l’Euphrate et le Tigre. La voie d’eau commune à ces deux *ugārums* est le Šabium (e.a. *CT* 47, 63 Si 14 et *BE* 6/1, 83 Ad 31).

Cette rivière traverse également les *ugārums* Ušgida, Iškun-Ištar, Iššiātum (*CT* 2, 5 Si 9) et l’illisible KU ḪU X AN. Elle trouve son origine dans l’Irmina (*MHET* 608 sans nom d’*ugārum*) 9.

Le Šarrum/Šarrum

Cette rivière apparaît dans Ašukum 10 (*YOS* 13, 470 s.d.) ce qui la situe entre l’Euphrate et l’Irmina.

Elle est mentionnée également dans Bāb ālim (*MHET* 108 et 217) et Iššiātum (Di 705 et Di 681/691b), 0.1.3 iku (*MHET* 168) et Ḫalḫalla (*MHET* 615) ce qui nous permet de localiser ces *ugārums* dans cette même région.

Puisqu’un champ de *ugārum* Gaminānum est dit ‘*ina* a.gār Gaminānim ša Ḫalḫallaḫîr’ (*MHET* 417 Si 10), et en supposant que Ḫalḫalla se situe tout entier d’un côté de l’Euphrate et de l’Irmina, Gaminānum se trouve aussi entre ces deux cours d’eau.

Exactement le même raisonnement peut être développé pour Eble avec *MHET* 606 (date perdue *ca* Si) : ‘0.0.4 iku a.šā kankal a.gār 0.1.0 iku.ta *ina* Ḫalḫallaḫîr’.

8 Notre étude globale et exhaustive sur la localisation de tous les *ugārums* sippariotes ainsi que des cours d’eau et de leurs digues sera publiée prochainement.

9 Nous démontrerons dans nos ‘Chains of Transmission’ que Paḫuṣum, Ušgida et Iškun-Ištar sont limitrophes.

10 Sous forme de sa digue : e šarrī. La digue se situe à côté de la rivière comme le montre *MHET* 108 et 217 : e Šarrīm.
Le idNabium-ḥegal

Le idNabium-ḥegal passe par Tenūnum, Gизānum et Nagūm. Comme nous savons que Nagūm se situe bal.ri Irnīna (e.a. MHET 552, Aṣ 17), au nord de celui-ci, les deux autres ugārumus traversés par le même cours d’eau doivent aussi s’y situer.

L’ugārum Ḥaṣārum se trouve bal.ri ḏ (BE 6/1, 94, Aṣ 3)11. Nous interprétons cette expression, utilisée sans nom de cours d’eau, comme se référant généralement à l’Irnīna. En effet, quatre ugārumus sont décrits comme bal.ri ḏ sans plus.

Il s’agit de : Tenūnum, Kabīrum [qu’un autre texte situe bal.ri Irnīna (MHET 224, Ḥa 26)], Merīgat [situé bal.ri Irnīna par MHET 870], Ḥaṣārum.

Comme les trois premiers sont certainement bal.ri Irnīna ce doit être le cas pour Ḥaṣārum aussi.

Le idGûnā

Ce cours d’eau nous permettra d’avancer une localisation encore incertaine pour l’ugārum par lequel il passe : Maḥāna (MHET 683 s.d.).

Dans MHET 555 (Aṣ 18) un champ est délimité par un idgu[...] d’une part et l’a.găr bu[...] de l’autre. Il n’y a que deux ugārumus dont le nom commence par bu- : Buṣa et Burā, tous deux situés entre l’Euphrate et l’Irnīna (MHET 894). Si le idgu[...] est le idGûnā, celui-ci doit se situer dans la même région, ainsi que l’ugārum Maḥāna.

Les incertains

Quelques-uns de nos ugārumus ne peuvent pas (encore) être situés avec certitude.

(sa) Bûnūm

La difficulté de localisation repose sans doute sur le fait que dans certains textes bīnum peut signifier ‘tamaris’ sans plus tandis que dans d’autres c’est un nom d’ugārum.

D’autre part le idAkšak-gamil passe par ‘ṣa Bînê’ (MHET 81/82, CT 47, 49). Or, cette rivière passe par Qablūm (MHET 189) ce qui situe le tout entre l’Euphrate et l’Irnīna.

Malheureusement les références mentionnant explicitement a.găr (MHET 604) ne contiennent pas d’informations concernant la situation de Bûnūm. Ša Bûnūm est

11 Le texte donne : ‘ṣa nagūm bal.ri ḏ. Puisque nous croyons qu’un ugārum ne peut se trouver dans un autre, nous interprétons ‘ṣa nagūm’ comme ‘faisant partie de la dépression’. Il est bien entendu possible que l’ugārum Nagūm tire son nom de son association avec une/cette dépression.
Le namkarum. Une étude de cas dans les textes...

délimité par le namkar Abâtum (MHET 604) qui est en relation avec le namkar Atânûm (MHET 425, Si 13) qui provient de l'Euphrate (MHET 426, Si 14).

Atânûnum
Selon MHET 425 (Si 13) cet ugarum comportait un champ délimité par deux namkarums: Abâtûm et Atânûnum. Le namkar Abâtûm délimite aussi un champ de l'ugarum Bûnum (MHET 604 s.d.). Comme nous n'avons pas d'autres éléments, la localisation de Atânûnum doit donc reposer sur celle de Bûnum, et reste donc, comme celle-ci, incertaine.

Ḫarbâni
Selon MHET 901 cet ugarum contient des champs délimités par l'Euphrate, mais se situe-t-il au nord ou au sud de ce fleuve ? Impossible pour le moment de le déterminer.

Tawirâtûm, Kâr-Šamaš et Ašukuûm
Selon CT 6, 6 Ašukuûm se trouve dans le territoire de Sippar-Jahrûrum, contrairement à notre liste MHET 894 qui le place dans celui de Sippar-Âmnûnum.
En fait il n'y a pas de contradiction mais nous devons conclure que Ašukuûm s'étendait des deux côtés de l'Euphrate. Un champ dans cet ugarum est délimité par la digue de Balala. Comme il s'agit du côté Jahrûrum, cela se situe donc au sud de l'Euphrate. Cette même digue forme la limite d'un champ dans Tawirâtûm.
Les deux ugarums sont de fait séparés par cette digue, ce qui montre que Tawirâtûm est également au sud du fleuve.
A cela il faut ajouter que la présence du id Akšak-gâmil dans Tawirâtûm montre que, tout comme son voisin Ašukuûm il s'étendait aussi au nord.
Tous deux sont dits dans leur partie sud ‘ina Kâr-Šamaš’ cette localité se situait donc au sud de l'Euphrate.
II.4. Les ugarums localisés

En résumé nous avons donc dégagé les localisations suivantes des ugarums de nos namkarums :

1. Au nord de l'Irmina :
 - Gizānum
 - Kabīrum
 - Merigat
 - Nagūm
 - Še.gīš/Šemūm šalmūm
 - Tenūnam
 - Ḫasārum
 - et le ḫid Nābium-ḫēgal

2. Entre l'Irmina et l'Euphrate :
 - Amūrūm
 - Ašukum 1
 - Bab alīm
 - Bāsi
 - Buṣa
 - Burā
 - Dišītum
 - Eble
 - Gamī/anānum
 - Ḫagliānum
 - Ḫalḫalla
 - Iššiātum
 - Iškūn-Ištar
 - KU ḤU X AN
 - Lašala
 - Maḫana ?
 - Naṣurēš/Lugalsagila
 - Paḫuşum
 - Ša Gula
 - Tawirātum 1
 - Ṭābu
 - Ušgida
 - Zubānu
 - 9 gān
 - et les rivières id Zabium, id Lugal/Šarrum et id Akšak-gamīl

3. Au sud de l'Euphrate :
 - Tawirātum 2
 - Ašukum 2
 - et les rivières id Ajabūbu et id Ḫarū-malīk

4. Localisation incertaine :
 - ša Bīnum
 - Ḫarbānī
 - Atanānum

III. DISCUSSION DES RÉFÉRENCES

Nous dégagerons d'abord les éléments intéressants pour notre étude, texte par texte, par ugarum.

1. Ašukum

I.1.

 CT 45, 50 Ad 24/2/10 bail à ferme : Aja-rišāt fille d’Īšu-ibnīšu baille à Ibeni-Marduk, bāru.

 1. 0.2.4 iku ašā a-gār a-šu-l-ku1
 2. i-ta nam-ka-ri-im
 3. ā i-ta ašā be-le-sū-nu lukur dûtu dumu.munus gi-mil-d AMAR.UTU

Il s‘agit d‘un champ de 0.2.4 iku (576 ares) situé dans l‘ugarum Ašukum, entre le namkarum et un champ de Bēlessunu, prêtresse nadītum de Šamaš, fille de Gimil-Marduk.
La propriété concernée est un champ de 0.2.3 iku (540 a) dans Ašukum, de l’autre côté de Kar-Šamaš, dans le territoire de Sippar-Jahhrum. Elle jouxte trois champs et le namkarum ‘des fils/descendants d’Awil-Šamaš’.

Awil-Šamaš ni ses fils ne sont mentionnés ailleurs dans le texte, le nom du namkarum doit donc référer ou bien à une situation antérieure ou à des propriétés situées ailleurs le long de son cours. En fait, un texte daté de Si 19/5/14 (Di 2115) mentionne e.a. un champ de 3 iku (108 ares) dans Ašukum, jouxtant deux autres champs (dont un appartenant à un sanga de Šamaš), un atappum (‘atap Iddin-Bunene’) et un battum.

Le champ fait partie des propriétés de Apil-ilišu, dont un des fils s’appelle Awil-Šamaš. Il n’y a nulle preuve que celui-ci soit le même que le père mentionné dans CT 6, 6, ce n’est qu’une simple possibilité mais les dates des deux textes ne s’y opposent pas.
Remarquons que le nom du namkarum rappelle la façon qu’avaient les scribes paléo-babyloniens de mettre à jour les noms des propriétaires des champs. Lorsqu’ils devaient indiquer les voisins d’un champ vendu ils avaient le choix entre le nom des propriétaires d’origine, même s’il y avait plus d’un siècle que la propriété était dans leur famille, ou bien ils faisaient précéder ce nom de ‘dumu.meš’, descendants de, pour marquer que la propriété avait été transmise dans la famille par héritage, sans documentation écrite.

Le nom d’un namkarum pouvait donc aussi être mis à jour de la même façon.

II. Atananum

II.3-4. MHET 425 Si 13/9/10 vente d’un champ de Šeriqti-Aja, lukur d.u.tu, fille de Šamaš-rê.um, à Bêlessunu, lukur d.u.tu, fille d’Ikûn-pî-Sin.

1. [...] iku a.sà i-na a.gâr a-ta-â-na1-nu-um
2. i-ta a.sà ir-dEN.ZU dumu ḫa-li-lum
3. û i-ta nam-ka-ar a-ba-tim
4. sag.bi nam-ka-ar a-tâ-nu-um
5. sag.bi.2.kam.ma a.sà tab.ba-we-di-im

Un champ dont la superficie n’est pas conservée, dans l’ugârum Atanânûm, est situé entre un autre champ et le namkarum Abâtûm. Par devant il jouxte le namkar Abâtim. Nous avons donc ici le cas de deux namkarums qui se rejoignent, ou partent d’une même origine. Un des deux porte un nom très similaire à celui de l’ugârum qu’il irrigue: a-tá-nu-um/a-ta-na-nu-um. Tous deux sont attestés comme noms de personnes.
Le namkarum. Une étude de cas dans les textes...

III. ša Binum

III.5. MHET 99 Sm donation ou héritage ; donateur et récipliant sont cassés.

1. 10.0.3 iku a.šā a.<gār> ša bi-nu-um
2. i-ta a.šā Ip-qa-ša
3. u i-ta a.šā Ima-nu-um-ba-lum-dingir
4. sag.1.kam nam-ka-rum
5. sag.2.kam ši-ri-ḫa-tum

Il s’agit e.a. d’un champ de 3 iku (108 ares) situé entre trois autres champs. Par devant il longe le namkarum (cfr le texte suivant).

III.6. MHET 604 s.d. donation de Awīl-ili à sa fille Amat-Šamaš, ses frères seront ses héritiers.

1. 0.1.3 iku a.šā a.gār a.šā bi-nu-um
2. i-ta a.šā ši-ri-ḫa-tum
3. dumu.munus ḫEN.ZU-ra-bi
4. sag.bi.1.kam a.šā dumu.me ip-qa-ša
5. šag.bi.2.kam nam-ka-ar la-ba-tum

Un champ de 0.1.3 iku (324 ares) est donné par un père à sa fille, ses frères seront ses héritiers.

Trois voisins seulement sont donnés, deux champs et le namkarum Abātum. C’est probablement du même champ qu’il est question dans le sommaire MHET 63 (s.d.).

Les propriétaires des deux champs avoisinants sont à mettre en relation avec ceux cités dans MHET 99.

<table>
<thead>
<tr>
<th>MHET 99</th>
<th>MHET 604</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.gār ša Binum</td>
<td>a.gār ša Binum</td>
</tr>
<tr>
<td>namkarum</td>
<td>namkar Abātum</td>
</tr>
<tr>
<td>a.šā</td>
<td>a.šā</td>
</tr>
<tr>
<td>Mannum-balum-ili</td>
<td>non</td>
</tr>
<tr>
<td>3 iku a.šā</td>
<td>0.1.3 iku a.šā</td>
</tr>
<tr>
<td>a.šā</td>
<td>a.šā</td>
</tr>
<tr>
<td>Ipquša</td>
<td>Ipquša</td>
</tr>
<tr>
<td>Širiḫātum</td>
<td>Širiḫātum dim Sin-rabi</td>
</tr>
<tr>
<td></td>
<td>a.šā dim Ipquša</td>
</tr>
</tbody>
</table>

Les propriétaires des deux champs avoisinants sont à mettre en relation avec ceux cités dans MHET 99.
Il est possible de coordonner ces deux textes.

Nous savons que les namkarums Atanum et Abatum se rejoignent (MHET 425, notre II 3-4).

Si nous tournons notre croquis de MHET 99 un quart de tour à gauche et inversons les voisins de gauche et droite, il apparaît que le champ de Mannum-bālum-ili devait mesurer 1 ēšē et se situer à l’endroit où les deux namkarums se rejoignaient. Cela correspond aussi bien avec la disposition des côtés ‘sag’ des deux champs. Comme dans la plupart des cas ces deux champs ont leur côté étroit (sag) le long du cours d’eau.

Entre MHET 99 et 425 Awil-ili aurait acquis ou hérité de ces deux champs. Cela impliquerait que le namkarum sans nom de MHET 99 était le namkarum Atanum.

Dans MHET 425 (cfr supra) un champ dans l’angle du namkarum Atanum et du namkarum Abatum était dans l’ugārum Atanum. Notre champ de 0.1.3 occupe également un angle formé par les mêmes namkarums mais il est situé dans l’ugārum ša Bīnum. Il s’agit donc de deux angles différents. Les ugārums Atanum et ša Bīnum sont donc limitrophes, séparés seulement par un namkarum.

Il reste cependant un problème. Dans MHET 604 un des voisins ‘iṭa’ n’est pas donné. Selon notre reconstruction il s’agirait du namkarum Atanum. Est-il possible que dans la description du champ on omette un namkarum voisin ?

12 Bien que MHET 604 ne soit pas daté il est possible de déterminer qu’il est postérieur à MHET 99 (Sm) par le fait que le premier désigne un voisin comme ‘dumu.me Ipqusa’, les enfants/descendants d’Ipqusa, alors que le second texte donne encore Ipqusa lui-même comme voisin.
IV. Eble

IV.7. CT 47, 7/7a AS adoption avec héritage. Bélessunu, prêtresse naditum de Šamaš, fille de Maḥšanu adopte Erištum naditum également, fille de Sin-ilum.

5. 0.1.3 iku a.ša i-na e-eb-le-e
6. a-ḫi nam-ka-ru-um
7. i-ta dEN.ZU-i-din-nam
8. ù ḫa-ia-um
9. ù na-bi. dEN.ZU

Une prêtresse naditum en adopte une autre et lui donne 0.1.3 iku (324 ares) de champ dans Eble, à côté (aḫi) du namkarum. Cette précision n’est peut-être pas indiquée sur l’enveloppe.

IV.8. CT 6, 46 AS 13/2/- vente de champ de Šamaš-in-mātim fils de Puzur-Šamaš à Lamassi, naditum de Šamaš, fille de Nākarum.

1. dub 0.1.0 iku a.ša i-na eb-le-e
2. i-ta be-le-sū-nu dumu.munus dumu sa-qa-aḫ-ḫa-ru-ú
3. ù i-ta ē.a an.dul.ľš
4. dumu f1x[1x-l-tim
5. 1 sag.bi sū-mu-ia dumu ḫa-ū-um
6. 1 sag.bi nam-ka-ru

Un champ de 1 eše (216 ares) est vendu. Il est situé entre trois autres propriétaires et le namkarum.

IV.9. MHET 606 date cassée, probablement Si: vente de champ; Mannaši, fille de Sin-šadunī, vend 4 iku (144 ares) de son champ à Bélessunu, naditum de Šamaš, fille d’Ikūn-pī-Sin.

1. 0.0.4 iku a.ša kankal a.ḡar 0.1.0 iku.ta.f1a
2. i-na ḫal-ḫal-laki
3. i-ta a.ša i-a-ri-im
4. ù i-ta a-tap i-ku-un-pia dEN.ZU
5. sag.bi.1.kam nam-κar f1x-1-x-a
6. sag.bi.2.kam ma-an-na-šī
7. dumu.munus dEN.ZU-ša-du-ni
Ce que nous pouvons représenter par :

\[
\begin{array}{c|c|c}
\text{namkar x x a} & \text{a.śa} & \text{4 iku a.śa} \\
\text{Jarim} & & \text{atap} \\
\text{4 iku a.śa} & \text{Ikün} & \text{ata} \\
\text{Mannasi} & \text{dm Sin-šadūni} & \text{P}
\end{array}
\]

La formulation dans la première ligne du texte est intéressante puisqu'elle montre que l'\textit{ugārum} Eble se situe dans le territoire de Ḥallalla.

Nous voyons donc qu'un \textit{atappum} est dérivé du \textit{namkarum}. Nous ne savons pas s'il y avait un \textit{atappum} de l'autre côté du \textit{namkarum}.

Remarquons, en passant, que l'acheteur est Bēlessunu, prêtresse nadītum, fille d'Ikūn-pī-Sin d'après qui l'\textit{atappum} est nommé. L'identité du patronyme avec le nom de l'\textit{atappum} n'est sans doute pas le fait du hasard.

Ce texte peut être raccordé à quelques autres également situés à Ḥallalla et que nous traiterons sous ce vocable.

Dans cet \textit{ugārum} deux fois le \textit{namkarum} apparaît sans nom, une fois il est nommé. Cette variation semble indiquer que toute confusion entre \textit{namkarums} était exclue, en d'autres mots, qu'il n'y en avait qu'un seul.

V. Gamānanum

V.10. \textit{CT} 47, 78/78a s.d. \textit{don de Nabi-Šamaš à sa fille Rubātum, nadītum de Šamaš, l'héritier de cette dernière est Šamaš-šeme.}

1. 0.0.3 iku a.ša \textit{i-na ga-ma-a-na-nim}
2. \textit{i-ta} \textit{dEN.ZU-re-me-ni}
3. \textit{u i-ta na-bi-d} \textit{du-tu}
4. \textit{sag.1.kam sin-i-din-nam dumu ka da da}
5. \textit{sag.2.kam nam-ka-ram}

Le père donne e.a. 3 iku (108 ares) dans Gamānanum. Le champ se trouve entre trois autres et le \textit{namkarum} (sans nom).
VI. (Uru d) Gula

VI.11-12 MHET 549 Aš 16/5/20 = CT 2, 8 Aš 16/5/20 bail à ferme de Taribatum, nadîtum de Šamaš, fille de Warad-Sîn, à Labištum, fils de Sin-rêmêni.

1. 0.0.4 iku ašā ab.šîn
2. 0.0.2 iku ašā kankal
3. 0.1.0 iku ašā a.gâr uru di.гуl.1[la]
4. i-ta ašā ṃtu
5. ā ṣi-ta ašā im-gur.dE.ΖU
6. sag.bi.1.kam nam-kar aga.uš.meš
7. sag.bi.2.kam ka-ar-mu
8. ša du-un-nim gal

Excepté quelques variantes minimes, MHET 549 et CT 2, 8 sont identiques. Il s’agit selon toute probabilité des exemplaires pour les deux partis.

Un champ de 1 èse (216 ares), partagé en 1/3 de terrain en friche et en 2/3 de terrain cultivé est donné en location. Le champ est situé dans l’ugārum de la localité Gula. Il se situe entre le champ du dieu Šamaš et un autre. Par devant il est limité par le namkarum des soldats (namkar aga.uš.meš), derrière il y a les ruines des grandes fortifications (karmû ša dunnim gal).

Dans Di 312 (Aš 16) nous trouvons ‘a.gâr gu.la aga.uš’ dans la description d’un champ jouxtant l’Euphrate. La qualification ‘aga.uš’ ajoutée au nom de l’ugārum doit signifier qu’une partie au moins était réservée aux soldats, ce qui explique le nom du namkarum.

VII. Ḥalḥalla

VII.13. CT 47, 62/62a Si 9/12/1 vente de champ de Lamassi, nadîtum de Šamaš, et de Ipiq-Antum, fils de Nûr-ilîšu, son père, à Bêlessunu, nadîtum de Šamaš, fille d’Ikûn-pî-Sîn. L’acheteuse possède déjà un champ avoisinant.
La même personne achète dans MHET 606. Cette famille étend donc ses possessions dans cette région pendant le règne de Si.

1. 0.2.0 iku a.šâ a.gâr ḫâl-ḥâl-lâkî
2. i-na qâb-li-i ša lukur ḏutu
3. i-ta a.šâ be-le-sû-nu 1dumu<munus> 1 i-ku-pî-sîn
4. ū i-ta nam-kâr urûkî
5. sag.bi.1.kam a.šâ dEN.ZU-kur-nî
6. sanga dî-ku-nû-ûm
7. sag.bi.2.kam e a.gâr murubâ

Un champ de 2 eš (432 ares) est vendu. Il est situé dans l’ugârum Ḥâlhallâ, dans le Qablûm des prêtresses-nadîtum (ina a.gâr Ḥâlhallâkî ina qablê ša lukur ḏutu). Comment faut-il interpréter cette expression ? S’agit-il d’un champ ‘au milieu’ des prêtresses, ou dans (l’ugârum) Qablûm des prêtresses, où elles possèdent beaucoup de champs.

Note sur le nom Qablûm

Si ce champ se trouve dans l’ugârum Qablûm, ce n’est peut-être pas par hasard qu’il mesure 2 eš. En effet si nous considérons tous les noms d’ugârumis qui se réfèrent à une certaine superficie de champ, nous obtenons un tableau allant de 1 eš à 3 eš (= 1 bûr) où il manque la catégorie de 2 eš, qui se situe exactement entre les deux autres. Le milieu étant ‘qablûm’ pourrait-il s’agir de l’origine de ce nom ?

1.0.0 Burâ
0.2.0 [Qablê]
0.1.0 Eble

\[\text{namkar-âlim} \]
\[\begin{array}{c}
\text{a.šâ Sin-šâdûni} \\
\text{sanga Ikûnûm} \\
\text{0.2.0 a.šâ} \\
\text{a.šâ Bêlessunu} \\
\text{dm Ikûn-pî-Šîn} \\
\text{e a.gâr murubâ}
\end{array} \]
Le namkarum. Une étude de cas dans les textes...

La présence d’un sanga d’Ikūnum concorde bien avec la localisation près de Ḫalḥalla où ce dieu est particulièrement vénéré.

Il est intéressant d’observer les positions relatives de la digue et du namkarum. Il ne s’agit pas d’un rehaussement longeant cette voie d’eau et sa fonction n’est donc pas d’endiguer les eaux de celle-ci. Elle se rapporte probablement à une autre voie d’eau à laquelle elle serait parallèle mais qui se trouve trop loin pour être mentionnée dans ce texte. Il s’agit probablement de la voie d’eau dans laquelle le namkarum prend son eau.

Le nom du namkarum renvoie à un lien direct avec la ville qui doit être Ḫalḥalla. Remarquons qu’il s’agit du namkarum de la ville. L’implication étant qu’il n’y en avait qu’un seul.

Le nom de la digue, la digue de l’uğārum du milieu, murub4 = qablūm, pourrait indiquer qu’il s’agit d’une digue qui limite l’uğārum. Cela confirmerait la situation du champ dans Qablūm. Il semble cependant y avoir une contradiction. Jusqu’à nouvel ordre un uğārum ne peut se trouver dans un autre et le texte est clair : dans l’uğārum Ḫalḥalla, dans Qablē.

Si la digue de l’uğārum Qablūm délimite cet uğārum, le champ ne peut pas être dedans puisqu’il est dans l’uğārum Ḫalḥalla. L’uğārum Qablūm se trouverait alors de l’autre côté de la digue. La deuxième ligne est alors à comprendre, en prenant lukur comme un collectif, ‘au milieu (des champs) des prêtresses nadiātum de Šamaš’.

VII.14. MHET 430 Si 15/1[] vente de champ (la tablette contient la copie de deux ventes) de Muḫaddû et Awil-[…] à Eli-herras, nadiātum de Šamaš [fille de ?].

1. [x1 iku a.šā a.gār Ḫal-Ḫal-[la]ki]
2. i-ta nam-kar […]
3. û i-ta be-la-ki-[im ...]
4. sag.bi.1.kam SIG-3MAR.[TU]
5. sag.bi.2.kam.ma ḫa-ab-[x1-] […]

Un champ dont la superficie n’est plus lisible est vendu. Il se situe entre trois autres champs et jouxte un namkarum dont le nom est cassé. Il s’agit probablement du namkar alim.

Vu le montant du prix, 3 mines d’argent, il doit s’agir d’une grande superficie.

VII.15. MHET 627 s.d. (Sm-Ḫa) vente de terrain constructible de Sabibum, fils de […], à Bēlessunu, nadiātum de Šamaš, fille de Utu-zimu.

1. dub 8 sar é.ki.gál
2. i-na Ḫal-Ḫal-la[ki]
Ce terrain non construit de 8 sar (2,88 ares) se trouve dans la ville de Ḫalḥalla même. Le texte situe le terrain entre une maison et le namkarum dont le nom est illisible. Faut-il restaurer na-am-ka-ar uru1 ?

Ce texte montre qu’il y avait un namkarum qui passait par la ville de Ḫalḥalla même. Ce ne peut être que le namkar alîm dont le nom est ainsi expliqué. Cela concorde bien avec l’indication tirée des textes précédents selon laquelle un ṣuṟum Ḫalḥallaki se situait le long d’une partie du namkar alîm.

Les textes du ‘dossier Ḫalḥalla’
Dans les textes suivants la référence au namkarum n’est pas relatée à un ṣuṟum nommé. Ils sont pourtant classés dans le dossier Ḫalḥalla par STOL (1998, 417-418) sur base des personnes mentionnées ou d’indications géographiques. Le dossier établi par cet auteur est assez large : il rassemble des textes mentionnant Ḫalḥalla-même, mais surtout des champs achetés ou donnés en bail par des personnes actives à Ḫalḥalla. Le domaine géographique de ces textes n’est donc pas exactement circonscrit mais doit être compris comme Ḫalḥalla et ses larges environs, sans que nous puissions déterminer l’étendue de ces environs. Selon le même auteur ce territoire engloberait les ṣuṟums Bâb alîm, Atanānum, Bar [...], Ša Binê, Eblê, Eribim, Gaminānum, Iškarum, (J)ahdânûm, Japsudum, Šalūtānum, Šuplānum, Šaptiātûm ša Ḫalḥalla, Tawirātum, Qablûm, Ubûm. Dans les environs se trouverait Lugalsagila.

VII.16. MHET 426 Si 14 échange de superficies. La première appartient à Sin-aham-iddinam, fils de Tuzalûm, la seconde, composée de deux parties, à Ikûn-pî-Sin, fils de Sin-tajjar.

La première :
1. ṣa a.sâ tû1.[sal ū1.dud.kib.nun ...]
2. i-ta e gu.la ša i-ta a-tap1-[pu]-1um1 [...]
3. i-ku-un-pû-sin dumu sin-ta-1ia1-ar
4. ū i-ta ū1.dud.[kib1.nun1[kâ1]
5. sag.bi.1.kam ia-ru1-x-û1
6. sag.bi.2.kam a-tap-pu-um
7. ša ū1.ku-un-pû-sin dumu ū1.dud.[EN.ZU]-1ia1-ar1
8. ū a.sâ sin-šeš-i-din-nam dumu1 tu-za-lum
Le namkarum. Une étude de cas dans les textes...

est échangée contre :
11. 0.0.1 iku 6? sar a.šā ú.šal 'id ud. kib1.nunki
12. bal.ri šd
13. i-ta e gu.la
14. ú i-ta 'id ud. kib1.nunki
15. 'sag1.bi.1.kam 'nam1-kar a-tā1-nu-um
16. 'sag1.bi.2.kam a.šā 'x1-hu-um-li-ši-ir
17. 'dumu1 ip-qa-ša

et contre :
18. [0.0.1] iku tū2 41 sar a.šā
19. ū.šal 'id ud. kib1.nunki
20. bal.ri šd
21. i-ta e šā i-ku-un-pi4-sin dumu sin-ta1-[ar]
22. ú i-ta 'id ud. kib1.nunki
23. sag.bi.1.kam nam-kar a-tā-nu-um
24. sag.bi.2.kam a.šā be-la-[...] dumu ta-ri-bu-um
25. šu.ši-kin 0.0.2 iku 10 sar a.šā

Schématiquement cela donne :

Deux superficies de 2 iku et 10 sar (75,6 ares) sont échangées.

La première est constituée par un champ, entre l'Euphrate et la Grande Digue (e gula). Les deux autres côtés sont formés l'un par Jaru et l'autre par l'atappum de Ikūn-pi-Sin et un champ.
La seconde superficie est composée de deux parties de 1 iku 6 sar et de 1 iku 4 sar respectivement.

Le champ de 1 iku 6 sar se situe également entre la Grande Digue et l’Euphrate. Par devant il y a le namkar Atânûm, par derrière un autre champ. Bien qu’aucun nom d’ugûrum ne soit mentionné, nous ne sommes donc pas loin de l’ugûrum Atanûnum (cfr notre II). D’autre part ce texte est classé dans le dossier Ḥalḥalla par STOL (1988, 418).

Ceci nous montre que le namkar Atânûm part de l’Euphrate même. Le champ en question se situe entre l’Euphrate et la Grande Digue et sa situation est décrite comme ú.sal dans le texte. Celui-ci ajoute qu’il s’agit d’un emplacement de l’autre côté du fleuve (bal.ri id). Le premier champ occupe une position analogue mais il n’y a pas d’indication bal.ri id, à moins qu’elle se trouvait sur la fin cassée de la première ligne.

Comme l’indication bal.ri id suit immédiatement la mention de l’Euphrate, il ne peut y avoir de doute : le champ se situe au-delà de ce fleuve. Mais au-delà par rapport à quoi ?

Il s’agit du territoire au nord de l’Euphrate entre celui-ci et l’Irmina, donc de l’autre côté par rapport à Sippar-Ḫaḫrûrum.

L’autre partie, de 1 iku 4 sar, est également décrite comme ú.sal bal.ri id, elle est également délimitée à l’avant par le namkar Atânûm et à l’arrière par un autre champ. Elle se trouve également entre l’Euphrate et une digue, appelée la digue d’Ikûn-pî-Sîn fils de Sin-tajjar.

La situation des deux parties est donc analogue : dans l’angle de l’Euphrate et du namkarûm mais la digue est différente, en plus il s’agit évidemment de deux champs différents. Comment résoudre ce puzzle ? La seule solution possible est que les deux champs se situent tous deux le long de l’Euphrate mais chacun sur un côté opposé du namkarûm.

Notons déjà qu’une partie de la digue le long de l’Euphrate s’appelait fort logiquement la Grande Digue mais qu’elle change de nom de l’autre côté du namkarûm. Là elle s’appelle ‘la digue d’Ikûn-pî-Sîn fils de Sin-tajjar’.

Nous avons vu plus haut qu’un namkarûm pouvait porter le nom d’une personne qui avait des propriétés le long de ses rives. Il apparaît ici que les atappûms et les digues aussi pouvaient recevoir des noms de la même façon et pour les mêmes raisons. Nous voyons en effet que cet Ikûn-pî-Sîn était propriétaire des deux champs (un de 1 iku 4 sar et un autre de 1 iku 6 sar) qu’il échange contre celui de 2 iku et 10 sar, peut-être pour regrouper ses propriétés. Aucun champ limitrophe ne lui appartient mais nous sentons sa présence au travers de l’atappûm qui porte son nom.

Deux morceaux jouxtant chacun l’Euphrate et le namkarûm sont échangés contre un seul le long de l’Euphrate. En fait Sin-aham-iddinam échange un morceau de son champ et conserve la partie au-dessus.
Le namkarum. Une étude de cas dans les textes...

Les surfaces échangées sont identiques, leur valeur l’est également bien qu’on serait tenté de penser qu’un champ formant une unité serait plus avantageux que deux parties séparées. Celles-ci doivent donc présenter un avantage supplémentaire : ou bien leur position sur le terrain à l’entrée d’un namkarum ou bien le désir qu’avait Sin-aham-iddinam de les acquérir.

L’atappum Ikûn-pî-Sin

Le cours de l’atappum Ikûn-pî-Sin est bizarre : il coule le long de la Grande Digue, puis contourne la digue pour former une partie de l’avant du champ de 2 iku 10 sar. Une partie seulement puisque l’autre partie de l’avant de ce champ est formée par le champ de Sin-aham-iddinam. Nous ne savons pas si cette digue continuait au-delà.

Nous savons par un autre texte, MHET 606 (date perdue), que cet atappum provenait d’un namkarum dont le nom est illisible mais qui pourrait bien être le namkar alîm puisque MHET 606 est à situer dans Ḥalḥalla.

La présence du namkar Atânûm pourrait signifier que nous sommes ici dans l’ugārum du même nom. Comme aucun nom d’ugārum est donné dans le texte, cela n’est pas exclu. Cela permettrait de situer un peu mieux cet ugārum. Sous Atanânûm, plus haut, nous avions constaté que deux namkarums se rejoignaient : l’Atânûm et l’Abâtum. Puisque nous savons maintenant que l’Atânûm sort de l’Euphrate ce doit être la branche principale ; l’Abâtum doit être dérivé de lui. Remarquons également que les champs situés entre l’Euphrate et sa digue sont désignés comme û.sal. Comme nous connaissons la superficie des champs, nous pouvons ici aussi calculer la distance minimale et maximale qu’il y avait entre le cours d’eau et la digue.

13 La surface à la ligne 18 du texte est cassée et non restaurée dans MHET. Si la première est de 1 iku 6 sar (ligne 11) et l’autre x iku et 4 sar il est quasiment certain que le nombre de iku manquant est 1, ce qui fait un total de 2 iku 10 sar, exactement le même que le champ échangé (ligne 1).

Au plus le champ se rapproche de la forme carrée, au plus petite cette distance. Nous prendrons donc comme distance minimale le côté du champ carré.

Au plus les grands côtés s’allongent au plus nous approchons de la distance maximale. Nous prendrons arbitrairement 10 m comme largeur minimale. Cela donne :

<table>
<thead>
<tr>
<th>surfaces</th>
<th>en m²</th>
<th>longueur du grand côté</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 iku 10 sar</td>
<td>7560</td>
<td>86,95 m</td>
</tr>
<tr>
<td>1 iku 6 sar</td>
<td>3816</td>
<td>61,77 m</td>
</tr>
<tr>
<td>1 iku 4 sar</td>
<td>3744</td>
<td>61,19 m</td>
</tr>
</tbody>
</table>

Si nous supposons que la distance entre la digue et l’Euphrate est plus ou moins la même pour les trois champs, elle se situe entre 61 et 374 m du fleuve. Sinon la distance maximale peut atteindre 756 m.

VII.17. **CT 47, 18** Sm vente de champ de Sabībum, fils de Ḥajabni-el à Ḥuzalātum, nadītum de Šamaš, fille d’Išu-abūšu, fils d’Utu-zimu. Ce même champ est revendu dans **MHET** 163, traité ci-dessous.

1. 0.0.1 iku a.ša [...]
2. *li-ter li-im-ti ša* dingir-fr x x
3. *i-ta nam-ka-rum â i-ta ñīd lugal*
4. sag.bi a.ša *sa-bi-bu-um*

```
a.ša
Sabībum

ïd lugal

I iku a.ša
namkarum
```
Un champ de 1 iku (36 ares) est vendu. Sa localisation dans un *ugârum* se trouvait peut-être sur la deuxième moitié, cassée, de la première ligne.

Il est situé entre le *namkarum* et le *id Lugal*. Son voisin avant (*sag.bi*) est un autre champ. Un voisin arrière n’est pas mentionné.

Le champ est vendu à Ḥuzalātûm fille de Illū-su-abūšu et le scribe a ajouté que ce dernier est le fils de Utu-zimu. Cette addition est exceptionnelle et on peut se demander quel en est le sens ici. Puisqu’il s’agit de la généalogie de l’acheteur ce ne peut être un renvoi à la documentation écrite précédente concernant le champ. La pratique courante peut être invoquée ici selon laquelle la fille (*nadītum*) achète mais le pater familias est considéré comme le véritable propriétaire. Vu sous cet angle c’est comme si le scribe avait voulu indiquer que Ḥuzalātûm achetait au nom de Illū-su-abūšu fils d’Utu-zimu.

VII.18. **MHET** 163 Ḥa 11 vente de deux champs de Illū-su-abūšu, fils d’Utu-zimu, à Sin-tajjar, fils d’Akšaja. Même champ que le précédent (*CT* 47, 18).

6. 0.0.1 iku (effacé) a.ša
7. *i-ta* na-am-ka-rî-im
8. û *i-ta* *id* lugal
9. *sag.bi* e *dšul.gi*

Avant ce champ le texte en mentionne un autre mesurant 1 bur (648 ares) et situé dans tawirūtum ‘*ina* a.ša garim’. Comme le texte ne fait pas le total des deux il n’est pas sûr que le deuxième champ se situe aussi dans Tawirātum.

Le champ fait 1 iku (36 ares). Il se trouve entre le *id* lugal et le *namkarum*, par devant il y a la digue de Šulgi.

Le champ de 1 iku est vendu par Illū-su-abūšu fils d’Utu-zimu. Le père, considéré comme le véritable propriétaire, vend donc un champ que sa fille avait acheté sous Sm.
Remarquons que dans le texte précédent la digue n’était pas mentionnée, sans doute parce que un des deux ‘sag’ était omis. Dans MHET 163 le champ voisin de Sabibum n’est pas mentionné mais bien la digue, l’autre ‘sag’ étant derechef omis.

Une autre différence entre les deux actes de vente c’est que dans le second, le scribe met le mot namkarum correctement au génitif.

Puisque nous connaissons la superficie du champ, il nous est possible de calculer la longueur approximative de cette digue comprise entre les deux cours d’eau.

Le champ fait 3600 m², s’il est carré il a donc 60 m de côté. S’il est rectangulaire nous considérons que la largeur minimale d’un champ devrait être de l’ordre de 10 m. La digue de Šulgi aurait donc une longueur entre 60 et 360 m.

Cette digue apparaît encore dans l’uğarum Dirıtum :

MHET 98 Sm parallèle à l’atappum ša Puzur-rabi
CT 2.24 Ae le même champ que le précédent (?) mais sans l’atappum
ainsi que dans l’uğarum Merigat :

OLA 21, 95/96 Si 22

Il est donc clair que le e Šulgi est plus grand que la partie comprise entre le Šarrum et le namkarum. Selon toute probabilité elle continuait de l’autre côté du namkarum au moins.

Cette digue doit bien entendu longer le 饸Šulgi.

VII. 19. CT 6, 33a Si 8/4/-

4. 0.1.0 iku a.ša kankal i-na gu nam-ka-rum
5. i-ta a.ša iš-šu-ri-ia

Parmi les biens que Belessunu, prêtresse nadıtum de Šamaš, fille de Šamaš-ilum, à Bēlessunu, nadıtum de Šamaš, fille de Nākarum.

VII.20. MHET 729 [AS ?]

1. 0.2.0 iku a.ša i-na a x x x
2. ša lu ti-gi-la!ki?
Le namkarum. Une étude de cas dans les textes...

3. sag.bi na-am-ka-ru-um
4. ús.sa.du da-qum dumu im-ľgur-rum

Il s’agit encore d’un achat de Ḥuzašānum fille d’Akšaja. La localisation du champ est pratiquement illisible. STOL (1998, 432) propose de lire i-na a-ta-pa-am ša lú Ti-gila ki. Un atappum peut en effet être nommé d’après une personne et la lecture concorde bien avec les signes copiés en fin de volume de MHET. Il y a cependant trois anomalies : un champ serait ‘ina’ un atappum ; le mot atappum serait à l’accusatif après ina ; ce même mot serait écrit défectueusement a-ta-pa-am au lieu de a-ta-ap-pa-am.

Il s’agit d’un texte du dossier d’Akšaja puisque sa fille achète le champ. Comme souvent, dans ce cas, le champ se situe à Ḥalḥalla, ce que nous savons e.a. par la présence comme témoin de Warad-Amurrim, sanga d’Ikūnum.

VII.21. MHET 326 ḫa xx vente d’un terrain constructible de Sin-erībam, fils de Sin-[...], à Sin-tajjar [...].

1. 6 sar é.ki.gal
2. wa-ar-ka-at bi-ri-tim\1
3. da é a-wa-ti-ia\1
4. ū da é dEN.ZU-ri-[...]
5. sag.bi.2.kam na-am-ka-[...]

Un terrain constructible (é ki.gal) de 6 sar est vendu.

De chaque côté il y a une maison, par devant le namka[]. Impossible donc de savoir s’il s’agit d’un namkarum nommé ou non.

Bien que cela ne soit pas explicitement dit, le terrain doit se situer à Ḥalḥalla, vu la présence comme témoin de Sin-šaduni fils du sanga d’Ikūnum Warad-Amurrim.

Voici donc après MHET 627 (notre VII.15) la deuxième référence à un namkarum en ville, frappé du même démon apocopeur que la précédente.

VII.22-23. CT 47, 13/13a Sm vente de champ de Dadum, fils de Watar-Sin, à Ḥuzašānum [nadītum de Šamaš], fille d’Akšaja.

<table>
<thead>
<tr>
<th>Case</th>
<th>Tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. aša úsal ma-la ma-ši-at</td>
<td>aša-am úsal ma-la ma-šu-ū</td>
</tr>
<tr>
<td>2. ki-ir-ba-na-am a-na na-ri-im</td>
<td>ki-ir-ba-na-am 3. a-na na-ri-im is-šu-uk</td>
</tr>
<tr>
<td>3. [naš]-ši-ik iš-tu nam-ka-ri-im</td>
<td>i-ta nam-ka-ri-tim [(vacat ?)]</td>
</tr>
<tr>
<td>4. [a]-di nam-ka-ri-im</td>
<td>la-bi-ri-tim [...]</td>
</tr>
<tr>
<td>5. ša-ap-li-im</td>
<td>i-ta nam-ka-ri-tim ū-[šim]</td>
</tr>
</tbody>
</table>

Un champ de surface non décrite (‘mašu’) et sans mention d’ugārum, est situé entre le namkarum labīrum, le vieux namkarum, et le namkarum eššum, le
nouveau. Sur l'enveloppe la description diffère sur un point: labīrum est remplacé par ṣaplum, inférieur ou en aval.

Le namkarum en aval, le vieux, est donc abandonné au profit d'un nouveau namkarum en amont. Hydrologiquement cela relève du bon sens voire de l'évidence même. Lorsqu'on abandonne l'embouchure existante, sans doute parce qu'elle ne fonctionne plus, on va prendre l'eau en amont et non en aval.

Les personnes concernées sont à situer dans cette localité: e.a. le vendeur Daduša. L'acheteur n'est autre que Ḥuzalātum, la fille d'Aḳšaja qui achète de nombreuses propriétés à Ḥalḥalla.

Remarquons enfin que le champ est décrit comme Ṽusal et que la formule kirbānam ana nārim issuk' est employée. Celle-ci comporte une variante intéressante sur l'enveloppe: le verbe n'y est pas au prêtérit mais au permansif 'nasik'. Pour une discussion de cette formule on se reporterà à nos Conclusions (4. Du texte au champ).

VII.24. CT 47, 9 Sm 5?/6/- vente d'un champ de Sinjatum, fils de Būr-Nunu, à Amat-Šamaš, nadītum de Šamaš, fille de Bēlšunu, fils de Sin-rēmēni.

1. 0.1.0 iku a.šā i-1na1 []
2. i-ta a.šā ħu1-[za-la-tum]
3. dumu.munus ak-ša-ia
4. ū i-ta a.šā be-ēl-šu-nu
5. [1] ḫam1 sag.bi nam-ka-ru-um
6. [2] ḫam1 sag.bi ša-aq-tum

Un champ de 1 eše (216 ares) est vendu. Le nom de l'ugārum ou de la localité indiqué sur la première ligne du texte est cassé après 'ina' mais la présence de Warad-Amurrīm sanga de Ikūnum comme témoin et de Ḥuzalātum fille d'Aḳšaja comme voisine garantissent une localisation Ḥalḥalléenne. Le champ se situe entre deux autres. Par devant il y a le namkarum, par derrière le 'ṣaqtum' 14.

Remarquons au passage qu'une nadītum achète et qu'ici aussi non seulement le nom de son père mais également celui de son grand-père sont donnés. Il s'agit sans doute d'une propriété familiale sous l'autorité du père.

VII.25. CT 47, 28/28a Ḥa 6 vente d'une aire de battage de Sin-eribam à Ḥuzalātum, nadītum de Šamaš, fille d'Aḳšaja.

14 Selon le CAD s.v.: (a geographic feature) OB. La seule référence donnée est ce même texte.
Le namkarum. Une étude de cas dans les textes...

1. 15 sar maš-kân-nu-um
2. i-ta nam-ka-ru-um
3. ū i-ta šu-pi-ša
4. sag ūḫkī-ia

Une aire de battage de 15 sar (5,4 ares) est vendue à Ḫuzalātum fille d’Akšaja. Elle est située entre le namkarum et la propriété de Šupīša. Par devant il y a Akšaja.

Bien qu’il n’y soit pas fait mention d’un ugārum, nous pouvons localiser notre texte à Ḥalḫalla, vu la présence d’un membre de la famille Akšaja comme acheteur et du voisin Sin-šadūni fils du sanga d’Ikūnum Warad-Amurrim.

Notons finalement que l’aire de battage est située le long d’un cours d’eau.

VII.26. MHET 189 Ḫa 16/8/7 vente de deux champs de Šelēbum, Itūr-ašdum, Ḥammija et Ḥabišum, fils de Sin-remēni, à Niši-inišu, nadtitum de Šamaš, fille de Šupīša. Le deuxième champ est décrit comme suit :

7. 0.1.1 iku ašā ú.sal 1.0.0 1/2 ma.na kū.babar
8. ús.sa.du ūd (effacé) lugal
9. ū ús.sa.du da-du-ša
10. sag.bi e-li-tum dEN.ZU-re-me-ni
11. sag.bi ša-ap-li-tum nam-ka-ar a-lim

Ce champ mesure 0.1.1 iku (252 ares). Il se situe entre le ūd Šarrum et un autre champ. En amont (sag elûtim) il jouxte un troisième champ, en aval (sag šaplitum) le namkarum de la ville (namkar ālim). Malgré l’absence de localisation nous sommes certainement dans les environs de Ḥalḫalla avec le namkar ālim, et comme témoin, Sin-šadūni sanga d’Ikūnum (STOL 1998, 437).

Si nous traduisons elûtim/šaplitum par amont et aval, cela nous donne une indication sur le sens du cours de la rivière Šarrum.

Plus important, ce texte montre que le namkar ālim part du ūdŠarrum.
Une intéressante comparaison de prix est également possible. Exceptionnellement les prix des deux terrains qui y sont vendus sont exprimés par la valeur du bur. Le premier champ, situé entre une digue et le cours d’eau Akšak-gāmil vaut 1 mine par bur. Le deuxième, que nous avons cité, vaut exactement la moitié : 1/2 mine par bur. La différence entre les deux réside bien évidemment dans leur situation respective. Tous deux sont à côté d’un cours d’eau, ce qui est sans doute positif, la différence étant que le second se trouve dans un coin et est probablement beaucoup plus sujet à érosion. Cela explique son prix inférieur.

VII.27. *MHET* 172 Ḥa 14 vente de champ de Mār-Baja [...] à Ḥuzalātum fille d’Akšaja.

1. 1x1 + 0.0.4 iku a.šā a.b1 sīn1
2. 1i-na2 [...] 1x1 a bi1 [...]
3. ša kaskal kar,d [...]
4. i-ta1 [...] im-gur- [...]
5. ü i-ta e ša1 [...]
6. ša1.bi.1.kam a- [...]
7. sag.bi.2.kam 1nam1- [...]
8. i-na nam-kar [...]
9. ša ti li PA [...]
10. me-e i-ša-[qí] ...

Encore un achat de Ḥuzalātum fille d’Akšaja et donc probablement un texte du dossier Ḥalḥalla sans que nous puissions préciser l’ugārum. Le texte est écrit à Sippar comme le prouve la présence de personnel du temple de Šamaš parmi les témoins.
De la surface du champ il ne reste que 4 iku de visible. Il s’agit d’un champ prêt à la culture (ab.sûn). La localisation est perdue.

Le texte mentionne un kaskal kar d[...] qu’on pourrait peut-être compléter en Kár-Šamaš.

Un des côtés est une digue (e ša ...) et l’arrière est probablement un namkarum dont il ne reste plus que le premier signe. Il est précisé qu’elle prendra son eau dans un namkarum dont le nom est cassé et auquel on ajoute une qualification dans une relative malheureusement indéchiffrée dans MHET.

VIII. Ḥaṛbañī

VIII.28. MHET 901 Aṣ 12/4/25 extrait d’une vente de champ ; achat par la fille de Nûr-Kaba’ta fils de Šamaš-bâni.

1. 1.1.4 iku a.šâ
2. a.gâr ḫar-ba-ni-i’ki
3. nam-ka-ru šâ ši-id-da-tim-ma
4. i-ta a.šâ sū-mu-ḫa-am-mu
5. ū i-ta nam-kar a-bu-ta-bu-um
6. sag.bi.1.kam.ma ṭud.kib.nunki-tum
7. sag.bi.2.kam.ma a.šâ di-šûm-ba-ni

Un grand champ de 1.1.4 bur (1.008 ares) est acheté. Il est situé dans l’uḡārum Ḥaṛbānî 15. D’un côté il y a un autre champ, de l’autre le namkar Abu-tābum. Devant il est délimité par l’Euphrate (Purattum), derrière par un troisième champ :

Euphrate

namkar Abu-tābum

1.1.4 a.šâ

a.šâ Sumu-ḫammu

a.šâ Išum-bâni

Ce qui nous intéresse particulièrement ici, c’est que le namkarum d’Abu-tābum part de l’Euphrate.

15 La ligne 3 nous est inintelligible.
Aucun propriétaire de ce nom n’est mentionné dans le texte. Ses champs doivent donc se situer ailleurs le long de ce namkarum ou alors le nom renvoie à une situation antérieure. Remarquons que notre base de données prosopographique de Sippar ne connaît d’Abu-ṭābūm que sous Za/AS. Išum-bāni est un nom attesté sous Sm/Ḫa/Si. Le nom du deuxième voisin, Sumu-ḫammū est attesté dans des textes datant de Za, Sm et de Ḫa. Il se pourrait donc bien que cet extrait concerne un texte bien plus ancien que la date qu’il porte.

Le champ se situe le long de l’Euphrate sans qu’il soit désigné comme ū.sal.

IX. Ḥašārūm
IX.29. MHET 509 Aš 6/1/26 bail à ferme de Amat-Māmu, nadītum de Šamaš, fille de Awīl-Nābium.

5. 0.0.3 iku a.šā i-ta e nam-ka'-ar 1a1.gār
6. ū i-ta a.Šā ib-ni-ȗMAR.TU

Deux champs sont bailés. Le deuxième fait 3 iku (108 ares) et est situé entre un autre champ et la digue du namkarum de l’uḡārum (e namkar a.gār).

X. Iṣṣiātūm
X.30. MHET 864 Si 5/10/20 partage de champs ; héritage de Niši-inīšu nadītum de Šamaš, fille de Iballūti ; son héritière est Lamassānī, nadītum de Šamaš, fille de Šiqlānūm.

4. 2.0.0 iku a.šā i-na a.gār iš-šī-a-tim
5. ša a.šā ši-qā-at-du-a-a
6. i-ta nam-ka-rum ū i-ta be-1 le1-sū-nu dumu.munus dEN.ZU-ma-lik

MHET 26 daté de Za ; CT 6, 44c de Sm 14 ; BDHP 28 de Ḫa 13 ou Si 8 et AbB 12, 56 est une lettre sans date.
Le namkarum. Une étude de cas dans les textes...

Un grand champ dans l’ugārum ʾIssiātum ‘ṣa aṣa Šiqat-Aja’ faisant partie du champ de Šiqat-Aja, se trouve entre le namkarum et un autre champ. Ici aussi il s’agit de la partie centrale d’un champ, par suite de quoi les limites inférieure et supérieure ne sont pas indiquées puisque ce sont les parties appartenant encore à Šiqat-Aja

X.31. JCS 11, 23, 9 Si 9/7/6 vente de champ de Aja-bēlet-nīšī, nadītim de Šamaš, fille de Ludlul-Sin, à Iltānī, nadītim de Šamaš, fille de Apīl-ilīšu.

1. 0.0.5 iku 30 sar aṣa a.ɡār ḫš-šī-tim
2. i-ta aṣa be-ta-tum lukur d.ṭu
3. dumu.munus na-wi-rum-ṣa-rū-ur
4. ū i-ta aṣa géme d.ṭu <dumu.munus> d.ENV-a-bi
5. i-ta na-am-ka-ar sanga d.ṭu
6. i-ta aṣa d.ṣa-a-be-te-lat-nī-šī lukur d.ṭu
7. dumu.munus lu-ud-lu-ul. d.ENV.ZU

aṣa
Amat-Šamaš
d.m.? Sin-abi

0.0.5 iku
30 sar aṣa
a.ɡār
Issiātum

aṣa
Bettatum lukur d.ṭu
d.m. Nawirum-šarur

aṣa
Aja-bēlet-nīšī lukur d.ṭu
d.m. Ludlul-Sin

99
Un champ de 5 iku et 30 sar (190,8 ares) est vendu. Il est situé dans l’ugārum Issiatum entre trois champs et le namkar sanga d'utu.

X.31a CT 2, 5 Si 9/7/26 Il est intéressant de noter que la même Іltani achète à la même Aja-bëlet-niši, vingt jours plus tard, un autre champ dans Іššitim (CT 2, 5).

Obv. 1. 1.0.0 iku a.šā i-na a.gār ḫš-ḥš-tim
2. i-ta a.šā ta-li-ib-ni lukur d'utu
3. dumu.munus mu-tu-ba-sa
4. ū i-ta a.šā ni-šš-i-ni lukur d'utu
5. dumu.munus ū-šūr-pš-išš-tár
6. sag.bi īd za-bi-un
7. ki-ir-ba-nam a-na īd id-di
8. sa.dulš.bi a.šā ta-li-ib-ni lukur d'utu
9. dumu.munus mu-tu-ba-sa
10. a-na pū ša ta-mi-tim ū-ul ib-ba-al-ki-it? 17
11. i-na nam-ka-ri-ša ū ma-aš-qṭ-ti-ša
12. i-ma-ak-ka-ra

Cette fois c'est 1 bur (6,48 ha) de champ situé entre deux autres appartenant à des nadiātu, l'avant du champ longeant le Zabium, dans lequel il 'a jeté une motte de terre'. Nous reviendrons plus loin sur le sens de cette expression.

Le namkarum ne peut pas être loin, car le texte ajoute, entre autres, ina namkariša u mašqitiša imakkara "elles irrigueront à partir de son namkarum et de sa 'bouche d'irrigation'".

17 On trouvera des interprétations diverses de cette ligne dans le CAD s.v. bārtum, mašqīum, naḥalkutum et namkarum. Nous tendons plutôt vers une autre interprétation, partant de pu = bārtum et prenant alors bārtum dans le sens de 'déclaration sous serment' (CAD s.v. bārtum où ce passage n'est pas cité). Il s'agirait alors d'une formule garantissant que les stipulations sous serment ne seront pas transgressées.
Le namkarum. Une étude de cas dans les textes...

X.32. MHET 477 Ae [] part d’héritage de Ilšu-bāni, fils de Sin-iddinam.

4°. 0.0.3 iku a.ša a.gār iš-ši-a-l tum1-ma
5°. i-ta dumu.meš ri-iš.dútu dumu [x x] [...]
6°. ū i-ta a.šā be-le-sū-nu lukur dútu [...]
7°. sag.bi.1.kam.ma e iud.ki.bī nunki1 [...]
8°. sag.bi.2.kam.ma e nam-ka<-rim> ša dumu.meš [dEN].ZU-i-din-nam

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.ša</td>
<td>3 iku</td>
</tr>
<tr>
<td>Belessunu</td>
<td>a.ša</td>
</tr>
<tr>
<td>lukur dútu</td>
<td>dumu.meš</td>
</tr>
<tr>
<td>[...]</td>
<td>Rš-Šamaš</td>
</tr>
<tr>
<td></td>
<td>dumu [...]</td>
</tr>
<tr>
<td></td>
<td>e namkarim ša dumu.meš Sin-iddinam</td>
</tr>
</tbody>
</table>

Plusieurs champs dans Iššātum sont énumérés comme les parts d’héritage, dans deux cas au moins, des fils de Sin-iddinam.

Un des champs mesure 3 iku (108 ares). Il se situe entre deux autres champs. Ce qui nous intéresse particulièrement ici, c’est que l’avant du champ est délimité par la digue (e) de l’Euphrate, l’arrière par la digue (e) du namkarum des descendants de Sin-iddinam.

La digue de l’Euphrate et celle de ce namkarum sont donc parallèles au moins pour une partie.

Le nom du namkarum est celui des descendants du propriétaire foncier dont les terres sont partagées dans le texte.

XI. Iškun-Ištar

XI.33. Di 1952 Si 11/12/1 échange de champs : Awīl-ilim, fils de Sin-iddinam échange avec Amat-Šamaš, fille de Sin-...

9. 0.0.4 iku a.ša a.gār iš-ku-un-išš-tár
10. i-ta a.ša dingir-šu-ba-ni dumu i-bi.d nin.šubur
11. ū i-ta a.ša (vacat)
12. sag.bi.1.kam id za-bi-um
13. sag.bi.2.kam nam-kar dingir-šu-ba-1ni1
Un champ de 4 iku (144 ares) dans Iškun-Ištar est échangé. Devant il longe le íd Zabium, par derrière, le namkar Ilšu-bānī. Ce namkarum est donc — au moins en partie — parallèle avec le Zabium. Un des autres voisins est Ilšu-bānī, fils de Ibbi-Ilabrat, ce qui explique le nom du namkarum.

XII. Lugal-sagila

XII.34. MHET 191 Ḫa 17 vente d’un champ de Itānī, fille de Beja, à Sin-tajjar, fils d’Akṣaja.

1. 0.0.2 iku ašā úša-lum
2. i-na ša dingir-našu-ri-eš
3. i-ta dEN.ZU-ia-ar ā dumu ak-ša l-ia
4. ā i-ia nam-ka-rum

enveloppe variante de la ligne 4 : ā i-ta nam-ka-rum ša i-bi-[Sin]

XII.35. CT 45 111 s.d. liste de propriétés immobilières que Itānī, fille de Beja, vend à Sin-tajjar, fils d’Akṣaja.

22. 0.1.0 iku ašā úsal i-na dingir-naša-am-ri-š
23. i-ta aša dEN.ZU-ia-ar
24. dumu ak-ša-ia
25. ā i-ta nam-ka-rum ša i-bi-dEN.ZU

XII.36. CT 45, 113 s.d. liste de propriétés immobilières que Itānī, fille de Beļja, vend à Sin-tajjar, fils d’Akṣaja.

26. 0.0.2 iku ašā úsal i-na našu-ri-š
27. i-ta dEN.ZU-ia-ar dumu ak-ša-ia
28. ā i-ta nam-ka-rum ša i-bi-dEN.ZU

XII.37. MHET 584 s.d. (post Ḫa 17) liste de propriétés immobilières que Itānī, fille de Beļja vend à Sin-tajjar, fils d’Akṣaja.
Le namkarum. Une étude de cas dans les textes...

24. 0.0.2 iku ašā ú llama i1-na dLugal-sag-il1-ša
25. i-ḫa ašā dEN.ZU-ta-iḫ-ar dumu an-[ša-iḫ]
26. ẖ i-ḫa nam-ḫar ša i-bi-dEN.ZU

Tous ces champs sont situés de même :

Les textes XII. 34 à 37 sont tous les mêmes à quelques variantes près. Ils donnent la liste de sept champs tous ú.sal, achetés e.a. à la famille Ibbi-Sin par la famille Aksaja sous Sm et Ha.

Un des champs est situé le long du namkarum ša Ibbi-Sin, où l’on voit encore que le namkarum est nommé d’après celui qui possédait là de nombreux champs. MHET 191 est le contrat original de vente de ce champ, daté Ha 17.

Notons que le contrat original donne le nom du namkarum sur l’enveloppe mais pas sur la tablette.

La situation des parcelles est décrite par rapport à Lugalsagila, au tawirtum de Ibbi-Sin et à la rive de l’Irmina, ce qui donne l’impression — mais pas la certitude — que ces données sont liées entre elles : Lugalsagila se trouverait alors près de l’Irmina et Ibbi-Sin y aurait eu des possessions étendues. Les textes témoignent probablement de la fin de cette fortune puisqu’ils témoignent de la vente des terrains à la famille Sin-tajjar.

La désignation ašā gar.taḫtawirtum et a.gar ne sont pas identiques. La première est plus restreinte que la seconde. Dans le cas de Lugalsagila les deux qualifications existent :

- ú.sal ina ašā gar.taḫtawirtum ša dLugalsagila, ou de façon raccourcie : ú.sal ina dLugalsagila (dans les trois textes mentionnés ci-dessus).

- MHET 240 (Ḫa 13) fait partie de ce même groupe dans le sens où il donne la liste de trois achats de champs faits par Ḫuzalātum nādirum de Šamaš et fille d’Aksam. Les champs sont situés ina taḫtawirtum ša Lugalsagila et a.gar Lugalsagila, le total de 1.0.4 iku (792 ares) est désigné comme a.gar dLugalsagila.

103
Remarquons encore que ces champs sont situés ina ú.sal à côté du namkarum. Cela doit signifier qu’ils se situent à l’endroit où le namkarum quitte le fleuve. Le nom de ce fleuve n’est indiqué sur aucun des textes.

XIII. Maḥana

XIII.38. MHET 683 s.d. extrait de contrat, donnant uniquement la localisation d’un champ.

1. 1.1.3 iku a.ša a.gàr ma-a-na
2. i-[t]a1 i.r.dEN.ZU ba-e-rum
3. ù i-ta dumu-iš-tár re-di l-i
4. sag.bi.1.kam.ma ḫu-na-a
5. sag.bi.[2.kam.ma] nam-ka-ar

(le reste est anépigraphe)

<table>
<thead>
<tr>
<th>Mār-istar redum</th>
<th>1.1.3 iku a.ša</th>
<th>Warad-Sin bā’erum</th>
<th>namkar</th>
</tr>
</thead>
<tbody>
<tr>
<td>id Gunà</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Le champ mesure 1.1.3 iku (972 ares) et se trouve entre les champs de deux militaires, un redâ et un bā’erum. Devant il y a le idGunà et derrière le namkarum. Les deux cours d’eau sont donc parallèles ici.

Nous nous trouvons dans un contexte militaire où, exceptionnellement, les soldats sont mentionnés par leur nom.

XIV. Tawirātum

XIV.39. MHET 427 Si 14/5/3+x vente d’un champ de Elmeštum, nadîtum de Šamaš, fille de Adad-šarrum, à Bēlessunu, nadîtum de Šamaš, fille d’Ikūn-pî-Sîn.

1. 0.1.0 i[ku] [a.ša a].gàr ta-wi-ir-tun
2. i-[t]a1 i.a1.ša r’dEN.ZU1-re-me-ni
3. ù i-ta a.ša na-kar-1tun lukur1 [d]jūtu1
4. sag.bi.1.kam.ma nam-ka-rum
5. sag.bi.2.kam.ma Ilu-na-il18

18 Suggestion de lecture de L. De Meyer ; MHET donne AN.NA.AN.
Le namkarum. Une étude de cas dans les textes...

Iluna-il

Un champ de 1 eše (216 ares) dans l’ugărum Tawir(ā)tum est vendu. Il se situe entre deux autres champs. Par devant il jouxte le namkarum.

XV. Tenūnam
XV.40. CT 2, 37 Za vente d’un champ de Nanna-mansum et Sin-bāni, fils de Sin-abūšu, à Ilšu-bāni.

1. 0.0.4 1/2 iku ašā i-na e-bi-ir-tim
2. i-na ta-wi-ir-tim ša te-nu-<nam>
3. e-li-ti-im
4. i-ta qa-ra-ni-im dumu é.gal
5. ū i-ta i-li-mi-di
6. sag.bi.1.kam kaskal aš-ta-ba-Ala?
7. sag.bi.2.kam nam-ka-ru-um
8. ša a.gār te-nu-nam

Ilmi-mi 4 1/2 iku ašā

Un champ de 4 1/2 iku (162 ares) est vendu. Il se situe ‘ina ebertim’ (ce qui est la traduction accadienne de bal.ri). ‘ina tawirtim ša Tenūnam elītim’, de l’autre côté (de la rivière) dans le tawirtum du Tenūnam supérieur.
Le tawirtum désigne une partie d’ugārum, ce tawirtum-ci ne porte pas de nom de personne comme c’est souvent le cas mais il est spécifié quant à sa situation dans la partie supérieure de l’ugārum.

Le terme ‘ebertum’ situe l’ugārum au nord de l’Irmina.

Autre précision importante : le champ en question est délimité à l’avant par une route, le kaskal Aštabala, et à l’arrière par le namkarum de l’ugārum Tenūnam (namkarum ša a.gār Tenūnam).

1. 0.1.5 1/2 iku [a].šā₁ a.gār te-nu-₁ nam₁
2. i-ta [id] d[na-bi-um-ḥé].gāl₁
3. ki-ir-ba-nam a-na [id] is-su-₁ uk₁
4. ī i-ta kislaḥ.meš
5. sag.bi.₁.kam.ma [nam-ka]₁ a.gār te-nu-₁ nam₁
6. sag.bi.₂.kam.ma a.šā [dumu-iš₂-tār₁
7. dumu i-šār-li-im

Un champ de 0.1.5 1/2 iku (414 ares) est vendu. Il se situe dans l’ugārum Tenūnam, entre le Nabium-ḥegal et les aires de battage (kislaḥ.meš). Par-devant il jouxte le namkarum de l’ugārum Tenūnam, par l’arrière un autre champ.

Ce texte nous montre donc que ce namkarum prend son eau dans le Nabium-ḥegal.

Remarquons au passage que les aires de battage se trouvent le long de l’eau, près d’un embranchement.

A la description du côté du Nabium-ḥegal, le texte ajoute la formule ‘kirbānam ana nārim issuk’ que nous commenterons plus loin.

XV.42. Di 700 Si 21/10/15 vente d’un champ de Ikūn-pī-Sin, fils de Sintajjar, à Mār-Istar, fils d’Išar-Lim.

1. 0.1.5 1/2 iku a.šā a.gār te-nu-nam
2. bal.ri [id] na-bi-um-ḥé.gāl
3. ṭutu.šū.a
4. i-ta [id] na-bi-um-ḥé.gāl
Le champ XV. 41 est donc encore vendu 14 ans plus tard, cette fois à un voisin, Mār-Istar. Sa situation est à nouveau décrite de façon identique\(^{19}\) sauf qu’on ajoute maintenant: de l’autre côté du id Nābium-ḫegal, à l’est (bal.ri id Nābium-ḫegal ḏutu.šu.a).

Remarquons au passage que le prix a fortement baissé: en Si 7 il vaut 1 2/3 mines et 5 gīn, en Si 21 il n’est plus que 2/3 de mine. En d’autres mots une baisse de plus de la moitié en quatorze ans.

\(^{19}\) On y a également ajouté une ‘histoire du champ voisin’, cfr M. TANRET, “The tablet and the field” et Chains of Transmission (tous deux sous presse).

\(\text{id Sin-muballit}\

\| \text{id Nābium-ḥegal} \\
\hline
\text{kislaḫ meš} \| \text{a.ša Mār-Istar} \\
\hline
0.1.5 1/2 iku \| a.ša \\
\hline
\text{namkar a.gār Tenūnam} \\

XV.43. Di 686 \text{Aṣ 4/2/1} certificat des descendants de Išar-Lim à Warad-Gipar et Sin-išmeanni, fils de Warad-Ulmaššitum.

3. \text{ša} 1.0.0 iku a.ša \text{ša} 1.1.0 iku AN.ZA.GĀR ʿu kislaḫ
4. a.gār \text{te-nu-nam}
5. \text{ša} a.ša.gar.ra \text{ša} i-šar-li-im
\text{(historique du champ de 1.1.0)}
11. i-ta a.ša gi-mīl-\text{d}AMAR.UTU di.kud dumu šīl-\text{d}utu
12. \text{ša dumu.meš} i-šar-li-im i-ša-mu

\(\text{Le namkarum. Une étude de cas dans les textes...}\)
Ce document détaille la chaîne de transmission d'un champ de 1.0.0 bur dans Tenūnam, dans l'a.șa gar.ra/tawirtum d'Išar-Lim. Ce champ est délimité à l'avant par le īd Sin-muballit et à l'arrière par la digue du namkarum de l'ugārum Tenūnam. Ces deux cours d'eau sont donc parallèles à cet endroit.

Il ne fait aucun doute, même si l'histoire des champs individuels décrits dans Di 680, Di 686, Di 700 et Di 691 est quelque peu complexe, que leur situation est la même. Ce qui nous intéresse particulièrement ici est que dans les textes datés avant As 4 (Di 680 Si 7, Di 700, Si 21) ces champs jouxtent le namkarum. Dans Di 686 (As 4/2/1) le namkarum est pourvu d'une digue à cet endroit. La conclusion est qu'entre Si 21 et As 4 une digue a été élevée ici. Cependant dans Di 691, daté trois mois et six jours plus tard, cette digue a disparu. Il pourrait bien s'agir là d'une imprécision puisque le texte est un bail à ferme et la formulation très succincte : namkar Tenūna vs le e namkar a.găr Tenūnam de Di 686. Qui plus est, dans Di 386, s.d., la digue est mentionnée. Or, cet extrait copie, vu les voisins mentionnés, un document rédigé sous Ḫa. La copie est plus récente et doit dater de Ad/As ; le scribe pourrait donc avoir introduit un anachronisme mais cela fait déjà deux anomalies à expliquer.

XV.44. Di 691 Aş 4/5/7 bail à ferme de Inanna-mansum, galamaḥ d'Annunitum, à Warad-Gipar, fils de Warad-Ulmaššītum, et Bēlānum, fils d'Inanna-mansum.

13. ī i-ta a.șa dumu.meš i-šar-li-im
14. sag.bi.1.kam.ma īd dEN.ZU-mu-ba-li-īt
15. sag.bi.2.kam.ma e nam-kar a.găr te-nu-nam
Le namkarum. Une étude de cas dans les textes...

1. 1.1.5 iku a."šā ab."šīn
2. a."gār te-"nu-"na
3. i-"ta id^ na-bi-um-"hé.gāl
4. ù i-"ta gi-"mil-"d AMAR."UTU di."kud
5. dumu siš-"l-"f.d"utu
6. sag.bi.1.kam id^ EN.ZU-"nu-ba-li-"iš
7. sag.bi.2.kam nam-"kar te-"nu-"na

Un champ cultivé (ab."šīn) de 1.1.5 iku (10,44 hectares) dans l'ugārum Tenūnam est situé comme suit :

<table>
<thead>
<tr>
<th>id Sin-muballit</th>
<th>namkar Tenūna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gimil-Marduk</td>
<td>1.1.5 a."šā</td>
</tr>
<tr>
<td>di."kud</td>
<td>id Nabium-"hégal</td>
</tr>
<tr>
<td>d. Şilli-Šamaš</td>
<td></td>
</tr>
</tbody>
</table>

Cela nous permet de conclure que le namkarum de l'ugārum Tenūnam prenait son eau dans le Nabium-"hégal. La relation entre le Nabium-"hégal et le Sin-muballit n’est pas claire : l’un dérive de l’autre mais lequel ?

Dans notre documentation le id Sin-muballit n’apparaît que dans Di 686, Di 691 et Di 386, toujours dans Tenūnam et en rapport ou bien avec le Nabium-"hégal ou avec le namkar Tenūnam. Hors des archives de Ur-Utu on le retrouve une seule fois dans CT 47, 30/30a peut-être dans l’ugārum Merigat (si la ligne est à lire mi-ig-ri-ga-"iš). Tout cela le situe avec certitude au nord de l’Irmina.

XV.45. Di 386 s.d. extrait de contrat donnant uniquement la localisation du champ.

1. 1.1.0 iku a."šā i-na ^a."gār1 te-"nu-"1nam1
2. [i]"1-"ta1.a.[šā] [d^"utu1-"tillar1-"su dumu itti1.dEN.LÍL-qi-"1in1-[ni]
3. ù i-"ta1 a."šā diškur-ma.an.sum dumu dingir-"šu-"a-bu-"šu
4. sag.bi.1.kam.ma id^ EN.ZU-"nu-ba-"li-"iš1
5. sag.bi.2.kam.ma e nam-"ka-"1ar1
6. a."gār te-"nu-"nam
Cet extrait donne la localisation de deux champs non avoisinants dans l'ugārum Tenūnam. L'un est grand, 1.1.0 (864 ares), situé entre le Sin-muballīt et la digue du namkarum de l'ugārum Tenūnam. L'autre est plus modeste: 5 iku (180 ares), situé entre le Nabium-ḥegal et la digue du namkarum de l'ugārum Tenūnam. A cet endroit aussi bien le Sin-muballīt que le Nabium-ḥegal sont parallèles à la digue du namkarum.

A en croire les dimensions des champs le id Sin-muballīt serait quelque peu plus éloigné de la digue que le id Nabium-ḥegal. Pour le premier cela correspond bien aux données du texte Di 691 commenté ci-dessus, où un champ légèrement plus grand, de 1.1.5, occupait une situation analogue.

Les données de ces deux textes peuvent être combinées dans le schéma suivant, donnant la position relative des quatre cours d'eau, le raccord avec l'Irmina étant hypothétique mais probable:
Le namkarum. Une étude de cas dans les textes...

XV.46. MHET 332 Ha []/4/18 ? vente (?) de deux (?) champs de Bûr-Sin, fils de Ibbi-IIlabrat, à ? [...] tum, fille de Sin- [...] ; enveloppe non ouverte.

1. [...] iku a.♯[a] kankal i-na [a][a][går ...]
2. [i-ta] a.♯[a] dEN.ZU-[ta-ia]-[ar]
3. [u] i-ta a.♯ dumu.munus [lugal]
4. [sag].bi.1.kam nam-kar a.går 1te-nu-[nam]
5. [sag].bi.1.2.kam 1d7.silà.ta
6. [...] a.♯ kankal i-na a.går 1te-[nu-nam]
7. [i-ta] [a].♯ dumu.munus zi-ki-r-pi-[dEN1].[ZU]
8. [u] i-ta a.♯ [l]-[ba-ni] x [...] x
9. [sag].bi.1.1.kam nam-kar a.går 1te-nu-[nam]
10. [sag].bi.1.2.kam 1d7.silà.<ta>
11. [♯u].♯nigin 1.0.1 iku a.♯[a] [kankal]

Ce texte fort abîmé décrit dans la partie conservée, deux champs spécifiés comme kankal, en friche, dont les dimensions sont à chaque fois perdues. Le total à la ligne 11 donne 1.0.1 iku (684 ares).

Le premier dont le nom d'ugārum est cassé mais qui se situe certainement dans Tenūnam, a deux autres champs comme voisins latéraux. Devant coule le namkar a.går Tenūnam et derrière le 1d7 7.silà.ta.

Pour le deuxième le nom d'ugārum est conservé : il s'agit bien de Tenūnam. Bien que situé entre deux autres champs que le premier, il fait également partie de la bande de terrain entre le namkaram de l'ugārum Tenūnam et le 1d7 7.silà.ta.

Ces deux cours d'eau sont parallèles au moins à cet endroit.
Remarquons que ces deux champs ont chacun une voisine : la fille du roi et la fille de Zikir-pi-Sin qui sont les deux voisines latérales du champ de 5 iku dans l’extrait Di 386 daté env. Ḥa.

XVI. Ṭābum

XVI.47. _MHET_ 675 s.d. (post Ad 29) liste et historique de champs achetés dans cet _ugārum_ aux fils de Riš-Šamaš par les fils d’Ilū-su-ibni ; l’achat en question est daté de Ae "k" (les lignes 1-4 et 14-16 décrivent le même champ de la même façon).

1. 1.1.0 [iku a.ša] i-na a.gār tā-bu-um
2. 1.1.ta [dumu.munus^{20}] dingir-ḫa-li-[i] ʾi-ta nam-ka-ri-[i]m
3. sag.1bi.1.[1.kam].ma a.ša [dumu.meš^{21}] ri-iš.dutu
4. sag.bi.2.kam.ma ḫaskal [pa-ḫu]-ls Sum1ki

^{20} L. Dekiere restaure ‘a.ša’, mais sur base de la ligne 14 du même texte il faut probablement lire ‘dumu.munus’.

^{21} Restauration sur base des lignes 7 et 10 du même texte, où on apprend que les noms de ces fils sont Ili-iddinam, Bunene-nāṣir et Šilli-Šamaš.
Le texte mentionne deux champs, un dans l’uğārum Amurrum et celui-ci, qui sont donnés en bail ensemble.
La première ligne est peu claire. Il ne peut s’agir de deux *ugārums*.
Le nom du *namkarum*, Šarrum-Šamaš appartient à un type connu mais peu attesté
dans la région de Sippar. Šarrum-Šamaš même est un hapax.

XVII. 0.1.3 iku
XVII.49. *CT* 4, 10 AS I liste de possessions immobilières (avec origine)
de Lamassānī, prétresse nadltum de Šamaš, fille
de Abum-waqrā.

7. 0.0.5 1/2 iku a.šā AN.ZA.GĀR û kislaḫ a.gār 0.1.3 iku.e
8. *i-ta* a.šā dumu.meš sagi (SIL.AȘ.U.DU₈) û *i-ta* a.šā dumu.meš *a-bu-um-wa-qar*
9. sag.bi.1.kam ǧīškīš a.gār 0.1.3 iku.e
10. sag.bi.2.kam a.šā dumu.meš *a-bu-um-wa-qar*
11. *i-na* nam-kar ra-ma-ni-šū me-e i-ša-at-ti

Un champ de 0.0.5 1/2 iku (198 ares) avec ‘tour’ (AN.ZA.GĀR) et aire de battage
dans l’*ugārum* 9 gān est décrit. Le *namkarum* ne délimite pas le champ. Il est cité
pour indiquer que le propriétaire y puisera son eau.

Les vergers, la ‘tour’ et l’aire de battage indiquent la proximité d’un cours d’eau.
Il est probable qu’il s’agit d’un *nārum*, sans doute celui d’où le *namkarum* tire son eau.

XVII.50. *BBVOT* 1, 114 Aš 11/1/22 bail à ferme de Lamassānī, nadītum de
Šamaš, fille de Ili-malu[...][22],
à Nabium-mu[...].

1. […]a.šā ab.sin
2. […]l’iku¹ a.šā kankal
3. 0.0.4 iku a.šā a.gār 0.1.3¹ iku.e
4. *i-li-iš-bu* 1.0.0 iku[...][x[...]]
5. *i-ta* nam-kar i-li-iš-iš²² x[...]

Un champ de 4 iku (144 ares) faisant partie d’un ensemble de 1 bur (648 ares) est
situé le long d’un *namkarum*. Le nom du *namkarum* est cassé mais si nous lisons
correctement *i-li-iš-iš²² x¹¹ il est probable — *pace* la copie — qu’il s’agit de Iliš-tikal,
seule personne connue dont le nom commence par ces quatre signes. Nous connaissons
une (et probablement une seule) personne de ce nom, fils de Hunnubum (*CT* 8, 12a Ḫa ꜱ 3 ;
VS 8, 17 AS ; *TCL* 1, 62 AS) et père de Erištē-Aja nadītum de Šamaš (de Sm 17 Di 2177 à Si 4, Di 2117), de Nūrum-lišī (de Si 4, Di 2117 à Ad x, Di 2130) et de Šamaš-
querraṭ (Si 4, Di 2117). Iliš-tikal est attesté dans une dizaine de textes des archives
d’Inanna-mansūm qui forment le dossier de maisons à Sippar-Jaḥrūrūm, près de la porte

[22] A comparer avec *i-li-ma-la-šé-šim²¹ de APR 42.
de (Ma)nungal, le quartier des prêtres. Notre documentation ne nous permet pas de rattacher Ilš-tikal à aucune propriété champêtre et donc non plus à l’"ugārum 9 gān.

S’il s’agit de cette personne, il faut constater que son nom est resté attaché à un namkarum depuis AS jusqu’à Aš.

XVIII. Sans nom d’"ugārum

10’. 40 sar ūškiri₆ i-ta ūškiri₆ dingir-šu-ba-₁ni₁
11’. ū i-ta id₄nam-ka-rum

Un des biens partagés est un verger (ūškiri₆) de 40 sar (43,20 ares) entre le verger d’Ilšu-bāni et le id₄namkarum. La localisation dans Ašukum n’est pas donnée explicitement mais quelques-unes des autres propriétés partagées s’y situent.

Remarquons le déterminatif id devant namkarum, un hapax.

XVIII.52. VS 9, 19/20 Ha 22 vente d’un champ de Iškur-mansum, [fils de] Ilšu-abūšu, à Bēltāni, nadītum de Šamaš, fille de Sin-iddinam.

1. sag 1 ninda a-na 20 ninda uš
2. 20 sar a.šā i-na nam-ka-₁rum₁
3. i-ta a.šā dškur-₁ma₁.an.sum
4. ū i-ta id₁ idigna₁
5. sag.bi.₁.kam e ša e-bi-₁r₉ ti₁ ididigna
6. sag.bi.₂.kam₁ a.šā ir₉dšlugal₉
Un petit champ de 20 sar (7,20 ares) est vendu. Le texte spécifie sa largeur et sa longueur: 1 ninda (= 6 m) sur 20 ninda (= 120 m). Il est situé entre le Tigre et un autre champ. Par devant il est délimité par la ‘digue de l’autre côté du Tigre’ (e ša eberti 1dIdigna). Nulle trace donc de namkarum. Cependant à la ligne 2 il y a la mention cryptique ‘ina namkarum’ (dans le namkarum)\(^{23}\).

Si les deux voisins ne sont pas pourvus de patronymes, il y a une bonne raison à cela: le voisin de droite est le vendeur et celui du bas son frère, comme nous l’apprend la liste des témoins. En fait Iškur-mansum vend une petite partie de son champ, celle qui longe le Tigre.

Il est remarquable de constater qu’il y a une digue qui forme un angle droit avec le Tigre. Il est plus remarquable encore que cette digue, d’après son nom, se situe à l’est du Tigre. Si le texte ne nous apprend rien de plus sur les namkarums, il montre que la rive gauche du Tigre était prise en culture par les habitants de Sippar.

XVIII.53. Di 1131 Si 2 vente d’un champ de Saggia, fils de Narām-Sin à Eli-eressa, naditum de Šamaš, fille de Sin-nūr-mātim.

\[^{23}\text{A comparer avec le tout aussi énigmatique ‘ina atapam?’ de CT 6, 33a (notre VII.19).}\]
Le namkarum. Une étude de cas dans les textes...

Un petit champ, puisque mesuré en sar, dont la superficie et la localisation sont perdues, est vendu. Il ne reste qu’une mesure : 5 ninda us [...], 30 m de côté. Puisque 3600 sar font un iku, l’autre côté du champ doit mesurer moins de 120 m. Il est situé entre trois autres champs et le namkarum d’un ugārum non nommé (namkar a.gär). Puisque le vendeur est aussi le voisin inférieur, celui-ci vend en fait une partie de son champ, plus précisément la partie qui longe le namkarum.

Comme les voisins et les contractants n’apparaissent pas ailleurs il est difficile de cerner davantage la localisation de cet ugārum. Les noms des témoins sont pratiquement tous illisibles.

La locution namkarum de l’ugārum est employée dans Hašārum ainsi que dans Tenūnam mais là jamais sans le nom de l’ugārum.

XVIII.54. TLB I, 225
1. a.ša qa‘-qa‘-di-tum’
2. ... bi
3. iš-tu a-tap-ir-im31 x x
4. a-di nam-ka-ri f[x1] [] f[x1] ... []

Ce texte très fragmentaire mentionne ‘de l’atappum... au namkarum...’ sans localisation possible. Notons simplement la proximité de ces deux cours d’eau et le fait qu’ils sont parallèles à cet endroit.

XVIII.55. MHET 689
1. 0.1.2 iku a.ša [...]
2. i-ta na-am-ka-tri-[im]

Peut-être la localisation de ce champ se trouvait-elle dans la partie cassée de la première ligne. Un seul voisin est donné : le namkarum.

Le montant du bail est de 4.3.2.0 d’orge pour 0.1.2 (28,8 ares) de surface ce qui est beaucoup, cp. 2.3.2.0 gur pour la même surface (Di 1066).

XVIII.56. MHET 584 (= CT 45 111 35-41 et CT 45 113 39-46) vente de propriétés de Nūr-ahḥi et Abum-waqaar, fils de Ibbi-Sin, à Erišti-Šamaš, fille de Sin-tajjar.

36. [1/2] iku 5 sar a.ša [uí] sal i-na gu ûdir-ni-na
37. [1 1/3] ûsar AN.ZA.GĀR1 3 1/3 sar <ka>-<wa>-ru-û
38. [li-tir] li-im-ṭi ę ša e-ri-ba-am-ma1
Un des champs énumérés se trouve le long du grand namkarum à côté du ‘bois’.
Dans huit textes seulement de notre corpus apparaît un gišṭir et il y a lieu de supposer qu’il s’agit du même bois dans plusieurs cas.

MHET 925 (ca Ḫa) localise un champ ‘a.gār Nagūm pānī gišṭir’, dans l’ugārum Nagūm, en face du ‘bois’.

Dans OLA 21, 95 (Si 22) nous lisons ‘a.gār Merigat ki libbu tepūtim ša pānī gišṭir’ dans l’ugārum Merigat parmi les champs préparés à la culture qui se trouvent face au ‘bois’.

MHET 431 (Si 15) et BE 6/II, 83 (Ad 31) mentionnent même un ugārum qui porte le nom ‘a.gār igi/pa-ni gišṭir’.

Comme nous avons constaté plus haut, Nagūm et Merigat se trouvent tous deux au nord de l’Irnina. La qualification ‘igi/pāni’, en face, pourrait bien signifier que le ‘bois’ se trouvait face à eux, au sud et le long de l’Irnina. L’ugārum ‘Pānī tirim’, en face du bois, se trouverait alors lui aussi au nord de l’Irnina.

Notre grand namkarum qui est à côté (pas en face) du ‘bois’ se trouverait alors également au sud de l’Irnina. Cette localisation a l’avantage de convenir aussi pour l’ugārum Lugalsagila dont tous les champs cités dans CT 45, 111, 113 et MHET 584 faisaient probablement partie.

24 Restauré sur base de CT 45, 111 : 15.
IV. CONCLUSIONS

Les données textuelles réunies

Que pouvons-nous conclure des commentaires sur les attestations du mot namkarum dans les textes documentaires sippariotes paléo-babyloniens ? Nous réunirons d’abord ce que les textes nous apprennent avant de franchir le pas vers la carte.

1. Les noms des namkarums

Le tableau ci-dessous donne un aperçu de tous les namkarums avec ou sans nom, classés par ūgarum :

<table>
<thead>
<tr>
<th>ūgarum</th>
<th>dates</th>
<th>textes</th>
<th>sans nom</th>
<th>Personne</th>
<th>ūgarum</th>
<th>autres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asukum</td>
<td>Si, Ad, Aš</td>
<td>3</td>
<td>2</td>
<td>dumu.meš Awil-Šamaš</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ḫ)atāt(ana)num</td>
<td>Si</td>
<td>1</td>
<td>—</td>
<td>Abatum et Atanum 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Šu) Binum</td>
<td>Sm, s.d.</td>
<td>2</td>
<td>1</td>
<td>Abatum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eble</td>
<td>Aš</td>
<td>2</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamū/anānum</td>
<td>ḫa</td>
<td>1</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(uru) gula</td>
<td>Aš</td>
<td>1</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hālīlallā</td>
<td>Sm-Ḫa, Ši</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘dos. Ḥalīlallā’</td>
<td>AS, Sm, Ḥa, Si</td>
<td>12</td>
<td>10</td>
<td>Atanum</td>
<td>ålim</td>
<td></td>
</tr>
<tr>
<td>Ḥarbani</td>
<td>Aš</td>
<td>1</td>
<td>—</td>
<td>Abu-Tābūm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ḥuišārum</td>
<td>Aš</td>
<td>1</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Issīātum</td>
<td>Si - Ae</td>
<td>3</td>
<td>1</td>
<td>dumu.meš Sin-iddinam</td>
<td>sanga Šamaš</td>
<td></td>
</tr>
<tr>
<td>Iškun-Ištar</td>
<td>Si</td>
<td>1</td>
<td>—</td>
<td>Ilšu-bani</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lugalsagila</td>
<td>Ḫa</td>
<td>4</td>
<td>—</td>
<td>Ibbi-Sin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maḥanā</td>
<td>s.d.</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tawiratūm</td>
<td>Ši</td>
<td>1</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenūnām</td>
<td>Za - Aš 4</td>
<td>7</td>
<td>—</td>
<td></td>
<td>(e)agār Tenūnām</td>
<td></td>
</tr>
<tr>
<td>Tābūm</td>
<td>Aš - Aš 13</td>
<td>2</td>
<td>1</td>
<td>Šarrum-Šamaš</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1.3 iku</td>
<td>AS - Aš 11</td>
<td>2</td>
<td>1</td>
<td>Ilš-t[i kal’]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sans nom</td>
<td>Aš</td>
<td>6</td>
<td>4</td>
<td>a.gār</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>55</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Les principes régissant la nomenclature de ces cours d’eau semblent être les suivants :

- de ceux qui portent un nom, la plus grande partie portent un nom de personne.

Nous avons pu identifier la plupart de ces personnes comme des propriétaires

25 Abatum et Atanum sont pris ici comme noms de personnes probablement Amorites sans certitude : Abatum est repris par Gelb (1980) ce qui n’est pas le cas pour Atanum ou ses variantes.
fonciers qui possédaient des champs le long d’un namkarum. Impossible de savoir si le namkarum à leur nom impliquait quelque droit (de propriété de quelque sorte) ou quelque obligation (d’entretien) de cette voie d’eau. L’emploi de la formule ‘ina namkar ramānīšu mē išatti’ 26 “le champ prend de l’eau dans son propre namkarum”, trop isolé, ne permet pas de conclure dans un sens ou dans l’autre. Remarquons aussi que ces noms sont ceux de personnes privées, tout au plus un sanga, jamais de nom de roi. Certaines rivières par contre portent des noms de rois : le ḫd Zabium, le ḫd Sin-muballīṭ ou renvoient au roi en général : le ḫd lugal. Par ce biais également la différence est exprimée entre les nārumu plus importants et les namkarums qui le sont moins.

– les deux noms de profession : le namkarum du sanga de Šamaš et le namkarum des soldats suivent le même principe : s’il est vrai que Sin-iddinam est un sanga de Šamaš les deux noms du namkarum d’Iṣšiātum se réduisent à un seul. Les ‘soldats’ sont évidemment cités comme groupe possédant des champs près du namkarum de (uru) Gula.

Vingt-sept attestations — la moitié — ne sont pas spécifiées par un nom et de celles qui en portent un, deux qualifient le namkarum en question comme ‘celui de l’ugārum’. Remarquons que même là où le namkarum avait un nom, noté sur l’enveloppe, celui-ci pouvait être omis sur la tablette, comme c’est le cas dans MHET 191. Dans tous ces cas on pourrait conclure qu’il n’y avait pas de confusion possible parce qu’il n’y avait qu’un namkarum par ugārum.

Il y a à cela deux exceptions. Le namkarum Abātum est cité dans deux ugārumu : Atānanum et ša Binum. Nous avons montré plus haut que ce namkarum coulait en fait entre ces deux ugārumu et pouvait en constituer (en partie ?) la délimitation. Abātum n’est donc pas véritablement dans les deux ugārumu.

La seconde exception a déjà été neutralisée plus haut : dans l’ugārum Iṣšiātum il y a un namkarum des fils de Sin-iddinam et un namkarum du sanga de Šamaš. Puisqu’il y a un Sin-iddinam sanga de Šamaš les deux noms pourraient désigner le même namkarum. Cela nous montre que le nom d’un namkarum pouvait être mis à jour : c’est d’abord celui du sanga (Si 9) puis de ses descendants (Ae).

En général nous pouvons nous demander si les namkarums dotés d’un nom de personne pouvaient changer de nom lorsque les terres passaient d’un grand propriétaire

26 Dans CT 4, 10, il s’agit d’un champ qui ne longe pas le namkarum, cas pour lequel il peut être utile de stipuler d’où il peut tirer son eau, mais pourquoi est-ce stipulé seulement ici ? L’emploi de formules parallèles avec namkarum et maṣqīṭum, atappum ou pas, combinées avec les verbes šatū, šaqū ou makārū est également rare.
à un autre ou si ce nom était donné dès l’origine du *namkarum* et était conservé jusqu’à sa disparition. Une indication est fournie par la dénomination *sanga* de Šamaš qui pourrait avoir changé en ‘descendants de Sin-iddinam’, une formule qui pouvait évidemment être utilisée pendant longtemps. Mais que savons-nous de la longévité de ces voies d’eau ?

2. La durée de vie d’un *namkarum*

Nous avons trouvé des *namkarums* dans les textes datés de Za jusqu’à Aš. Dans quelques rares cas nous avons plusieurs textes mentionnant le même *namkarum* nommé :

<table>
<thead>
<tr>
<th>atteste de</th>
<th>à</th>
</tr>
</thead>
<tbody>
<tr>
<td>namkar Abātum</td>
<td>env. Sm 28 Si 13/9/10 (MHET 425) = maximum 76 ans</td>
</tr>
<tr>
<td>namkar a.gâr Tenûnam</td>
<td>Za (CT 2, 37) Aš 4 (Di 691) = maximum 202 ans</td>
</tr>
<tr>
<td>namkar Atānum</td>
<td>Si 13 (MHET 425) Si 14 (MHET 426)</td>
</tr>
<tr>
<td>namkar sanga Šamaš</td>
<td>dumu.meš Sin-iddinam Si 9 Ae = maximum 57 ans</td>
</tr>
</tbody>
</table>

Dans l’*ugārum* Tābûm un *namkarum* sans nom apparaît sous Ae, nommé Šarrum-Šamaš on le trouve dans un texte daté de Aš 13. S’il s’agit du même il serait documenté sur 78 ans maximum.

De même, dans 9 gân un *namkarum* sans nom apparaît en AS 1, le namkarum Iliš-ti[ki] est daté de Aš 11 ; cela fait 194 ans.

Il est bien évident que les chiffres ci-dessus ne nous renseignent que sur la durée minimale de ces *namkarums* : ils peuvent avoir existé avant et après ce que le hasard des textes nous livre.

Dans un cas nous sommes un peu mieux renseignés. Il s’agit d’un des dossiers de nos ‘Chains of Transmission’.

Ur-Utu achète un champ dans l’*ugārum* Paḫusum en Aš 11. Celui-ci est entouré de quatre autres champs et ne longe donc pas un *namkarum*. Dans les archives d’Ur-Utu nous avons retrouvé les autres documents se rapportant à cet achat. Il s’agissait à l’origine de quatre champs adjacents, vendus à Ur-Utu comme un ensemble. Le document de transmission d’une des quatre parties, un contrat d’échange daté Si 11,

27 Le même problème se pose évidemment pour les *nārātuṯ* pourvus de noms de rois. Une rivière avec un tel nom signifie sans doute que le roi y a fait effectuer de grands travaux, souvent répertoriés dans un nom d’année, mais comment s’appelait ce cours d’eau avant cela ?

28 A cause de la voisine Širiḫatum que nous trouvons aussi dans *MHET* 99 daté de Sm.
MHEM 5/1 M. Tanret

donne comme un des voisins le namkar Ilšu-bānī, fils de Ibbi-I acabrat. Force est de conclure qu’entre Si 11 et Aš 11, une période de 103 ans, le namkarum a disparu.

Ici encore, nous ne pouvons déterminer combien de temps avant notre première attestation en Si 11 le namkarum existait, ni combien de temps avant Aš 11 il avait disparu, mais ce siècle est le terme le plus précis que nous puissions déterminer à partir de notre corpus.

Remarquons enfin que ce que les textes nous livrent sont les noms de ces cours d’eau. Les levées qu’ils ont formées et qui témoignent pour nous de leur présence aujourd’hui encore, une fois constituées n’ont sans doute jamais été effacées et ont pu être réutilisées (de façon continue ou avec intermittence) comme il a été indiqué dans la contribution de Cole et Gasche dans ce volume.

Ce que le nom ou la simple mention d’un namkarum non nommé nous révèle c’est que la levée était à ce moment-là ‘vivante’, c.-à-d. porteuse d’un cours d’eau.

La question posée plus haut quant à la permanence des noms d’ugārum ne peut malheureusement être résolue dans l’état actuel de notre corpus.

3. L’ordre de grandeur des namkarums

Le CAD cite un passage d’un texte astronomique tardif (ACh. Suppl. Adad 60 : 3), qui situe l’ordre de grandeur relatif des namkarums :

namgaru itti id
le namkarum sera séparé de la rivière
atappi itti namgari..inakkiruma l’atappum du namkarum
PA₅ atappiša et le PA₅ de son atappum

Les namkarums, selon ce texte, sont donc des voies d’eau de second ordre, après les rivières (fd/nārum) et avant les atappums et PA₅.

Cette situation était-elle la même pendant la période paléo-babylonienne ? Dans cinq cas nous pouvons déterminer d’où les namkarums de nos textes recevaient leur eau :

– le namkar Atānum part de l’Euphrate
– le namkar Abu-Ṭābum part de l’Euphrate
– le namkar ḫlim part du id Lugal/Šarrum
– le namkar gša ita ḫti part probablement de l’Irmina (MHET 584 et CT 45, 111/113)
– le namkar a.gār Tenūnum part du idNabium-ḫegal.

29 A 485 s.v., atappu restauré à partir de Adad 59 : 14. Cité aussi CAD N 1 s.v. namkarum, 231.
Dans un cas un atappum est dérivé d’un namkarum :
- l’atap Ikûn-pi-Sin du namkar xxx-a

Dans un cas un namkarum pourrait être issu d’un autre :
- les namkar Abâtîn du namkar Atânûm

Cette dernière exception mise à part, les namkarums sont donc directement tributaires des grandes rivières comme l’Euphrate et l’Irmina ou de rivières de second ordre comme le Šarrûm et le Nabium-ḫegal.

Les digues associées aux namkarums 30

Trois namkarums sont attestés avec leur digue :

<table>
<thead>
<tr>
<th>namkarum</th>
<th>en angle droit sur</th>
<th>date</th>
<th>référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>e namkarim ša dumu.meš Sin-iddînâm</td>
<td>MHET 477</td>
<td>Ae</td>
<td>Iššîätûm</td>
</tr>
<tr>
<td>e namkar a.går</td>
<td>MHET 509</td>
<td>Az 6</td>
<td>Ḫâšûrûm</td>
</tr>
<tr>
<td>e namkar a.går Tenûnâm</td>
<td>Di 386</td>
<td>s.d. (Ḫa) Tenûnûm</td>
<td></td>
</tr>
<tr>
<td>idem</td>
<td>Di 686</td>
<td>Aš 4</td>
<td>ibidem</td>
</tr>
</tbody>
</table>

Quelques autres digues ne longent pas les namkarums mais se trouvent en angle droit par rapport à eux :

<table>
<thead>
<tr>
<th>namkarum</th>
<th>en angle droit sur</th>
<th>date</th>
<th>référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>e a.går murubû (= Qablûm)</td>
<td>le namkar ālim</td>
<td>Si 9</td>
<td>CT 47, 62</td>
</tr>
<tr>
<td>e Gûlû et e ša Ikûn-pi-Sin dumu Sin-tajjar</td>
<td>le namkar Atânûm</td>
<td>Si 14</td>
<td>MHET 426</td>
</tr>
</tbody>
</table>

Dans les deux cas il s’agit du schéma suivant qui est peut-être plus général que ce que le nombre fort limité des attestations laisse supposer :

![Diagram](image)

30 Il y a bon nombre de références à des digues dans le corpus sippariote. Nous reviendrons ailleurs sur ce sujet, spécialement sur les digues constituant des limites d’ugârûms.
Dans un autre cas (Di 686, notre XV. 43) le namkarum est bien pourvu d'une digue à son embranchement avec le nārum :

Ces digues servent évidemment à protéger les terres contre les inondations de la rivière. Lorsqu'elles ne se trouvent pas immédiatement le long du cours d'eau mais à quelque distance les champs situés entre ces digues et la rivière sont appelés ā.sal/ūšallum.

4. Du texte au champ : la formule ‘kirbānam ana nārim issuk’

Un texte que nous avons commenté plus haut dans l’ugārum Tenūnam, doit retenir particulièrement notre attention ici, puisqu’il précise les positions relatives d’un nārum et d’un namkarum, tout en donnant une spécification intéressante quant au nārum. Il s’agit d’une vente de champ, datée Si 7/12/20 (Di 680) :

Obv. 1. 0.1.5 1/2 iku [a].fšā1 a.gār te-nu-līnam1
2. i-ia īdana-bi-um-ḥē1 gāl1
3. ki-ir-ba-nam a-na īd is-su-līuk1
4. ē i-ta ki.ud.meš
5. sag.bi.1.kam.ma ūnam-kaš1 a.gār te-nu-līnam1
6. sag.bi.2.kam.ma a.šā1 dumu-išš-liš1
7. dumu i-šar-li-im

Le point crucial est l’interprétation de la clause ‘kirbānam ina nārim issuk’. Après VEENHOF (1973) elle a été commentée par MALUL (1988, 406 et surtout 417) qui conclut que l’interprétation ne peut être symbolique et que c’est bien le champ qui ‘jette une motte dans la rivière’.

Il est évident que cela doit indiquer une érosion des bords de la rivière. Cependant, on a objecté à cette interprétation que le verbe est au prétérít et décrit donc une action ponctuelle et unique, alors que le processus d’érosion est continu et demanderait plutôt le mode duratif du verbe.

Nous croyons que cette question peut être résolue par un raisonnement simple.
Le namkarum. Une étude de cas dans les textes...

Quelle est la fonction d’une telle clause dans un contrat de vente ? Il ne peut s’agir que d’une clause qui protège le vendeur contre d’éventuelles poursuites juridiques ultérieures de l’acheteur. Le vendeur signale qu’il est déjà arrivé que le champ ‘lance’ une motte de terre dans la rivière et que cela pourrait donc, éventuellement, encore se produire. Il ne peut en aucun cas s’agir de prévenir l’acheteur que le champ est soumis à un processus d’érosion continu qui devrait ultimement aboutir à sa disparition complète. Le champ en question serait alors invendable.

En réalité ce genre d’érosion n’est pas continu, il peut survenir, s’arrêter puis reprendre sur des périodes assez longues. Le fait que la clause signale un événement unique par le prétérit n’infirme donc pas l’hypothèse de l’érosion.

Nous pouvons dès lors donner une représentation concrète à ce genre de situation sur le terrain. Puisqu’il y a érosion, il doit s’agir de l’endroit où celle-ci est la plus forte : la rive extérieure d’un méandre.

Le namkarum part donc de la rive extérieure d’un méandre, ce qui est une situation tout à fait logique : si on veut créer de grandes voies d’eau artificielles à partir des cours d’eau naturels le meilleur point de départ possible est celui où le courant pousse l’eau vers ces canaux.

Ce texte, - et les données que nous en déduisons -, rattache donc deux éléments observables sur le terrain : un méandre et le cours d’un canal important.

Nous verrons que ces données sont immédiatement observables sur les cartes et photos modernes. Une preuve encore plus convaincante nous est cependant fournie par une des rares cartes sur argile de la Mésopotamie ancienne.

Ce que la carte cassite révèle

Ce document, publié par FINKELSTEIN (1962, 80) puis republié par VAN SOLDT (1988, 104) serait cassite et proviendrait de Nippur. 31 Ce qui nous intéresse ici, c’est qu’elle reproduit exactement la situation que nous venons de décrire.

L’élément essentiel de cette carte est un grand méandre, dans lequel est inscrit le nom du cours d’eau : la rivière Ḥamrī. De la partie extérieure de ce méandre partent deux canaux. À l’intérieur de ceux-ci il y a leur dénomination : ‘namkarum’.

Cela représente et confirme donc exactement la situation que nous avons dégagé de notre Di 680.

31 Nous reviendrons ailleurs et de façon plus exhaustive sur toutes les implications hydrologiques jusqu’ici négligées de ce document fort intéressant.
Une carte ancienne et les photos satellite

Nous reproduisons ci-dessous la partie de la carte de BEWSHER (1885) (fig. 1) et d'une photo satellite\(^2\) (fig. 2) donnant l'Euphrate entre Sippar-Jahrûrûm et Sippar-Ammûnum sur lequel les méandres et des canaux partant de ces méandres sont clairement perceptibles\(^3\). Il est clair qu'il s'agit là de structures du même type que nos namkarums même si leur datation est sans doute bien postérieure.

\(^3\) Nous remercions K. Verhoeven qui a bien voulu réaliser ces reproductions.
Des canaux à double embranchement

On remarquera sur la photo (fig 2) qu'un certain nombre de namkarums semblent avoir des doubles embranchements à partir des rivières et qu'il y a, à partir de plus d'un méandre, des embranchements de ce type superposés.

Nous voudrions rattacher les structures de ce type au texte CT 47, 13/13a (Sm) que nous avons traité plus haut sous Ḥalḥalla.

Un champ y est situé entre le namkarum labīrum, le vieux namkarum, et le namkarum eššum, le nouveau. Sur l'enveloppe la description diffère sur un point : labīrum est remplacé par šaplum, inférieur ou en aval.

Le namkarum en aval, le vieux, est donc abandonné au profit d'un nouveau namkarum en amont. Hydrologiquement cela relève du bon sens voire de l'évidence même. Lorsqu'on abandonne l'embouchure existante, sans doute parce qu'elle ne fonctionne plus, on va prendre l'eau en amont et non en aval. Une nouvelle embouchure est donc créée. Le reste du canal reste évidemment en emploi.
Si une telle situation se reproduit quelquefois une situation d'embouchures multiples et superposées se développe, telle que nous pouvons l'observer sur les photos, dont nous tirons en exemple la fig 3.

5. Les namkarums par rapport à l'Irnina et l'Euphrate

Notre localisation des ugārums a montré que la plupart de ceux dans lesquels un namkarum est attesté se situent entre l'Euphrate et l'Irmina. C'est là aussi que nous avons retrouvé la plupart de nos autres cours d'eau. Dix namkarums se situent donc dans cette région (dont un incertain), deux seulement au nord de l'Irmina, deux se trouvent dans des ugārums partiellement au nord et au sud de l'Euphrate, trois dans des ugārums non localisés.

Il y a certainement dans les attestations de namkarums une partie de hasard : pour qu'ils soient mentionnés il faut qu'un champ vendu se trouve 'par hasard' à côté d'un tel canal. Cependant, sur la masse de la documentation que nous avons à présent, une telle prépondérance de la région entre l'Irmina et l'Euphrate doit quand-même être significative. La plupart des terres arables et exploitées par les Sippariotes, qu'ils soient Yahruréens ou Ammanites, doit se trouver là.
6. Le namkarum mesuré ?

Le seul texte qui donne réellement des mesures concernant un *namkarum* est *UET 5, 857* transcrit et commenté par CHARPIN (1986, 76 sq). Comme le remarque l’auteur il s’agit d’un tableau calculant les dimensions d’un *namkarum* en cours de creusement. Les dimensions données sont différentes longueurs (malheureusement perdues), des largeurs et des profondeurs. La longueur totale est un peu plus de 2/3 de double-lieue, environ 7 km. Si la largeur est exprimée en coudées, elle représente environ 20 m. Cela correspond bien à l’ordre de grandeur des vestiges que nous avons relevés sur la carte. La profondeur semble pourtant très réduite : une ou deux coudées, donc un demi-mètre ou un mètre.

7. Le *namkarum* dans les autres textes

Bien que notre étude se limite à la région de Sippar pendant la période paléo-babylonienne, il nous a semblé intéressant de réunir quelques éléments provenant des périodes postérieures au sujet des *namkarums*. Ces informations éparses montrent, à notre avis, que ce type de canal d’irrigation a non seulement continué à exister, mais qu’il a rempli les mêmes fonctions. Pendant la période paléo-babylonienne le genre de textes de notre corpus fait que nous n’avons pratiquement que des localisations dans des *ugārums*, des relations avec d’autres cours d’eau ou des digues. La seule fonction que nous pouvions clairement dégager de ce corpus est l’irrigation.

Les textes hors de notre corpus, cités ci-dessous, permettent de dégager une autre fonction non moins importante qui est la régulation des eaux. Le fait qu’on pouvait, à Larsa, faire couler le trop plein d’eau, via un *namkarum*, dans les marais est tout à fait claire à ce sujet. La mention d’un *natbaktu* et surtout d’un *balīṭum*, ce dernier non seulement sur la carte cassite mais aussi dans notre corpus, comme une sorte de réservoir, est un autre élément de ce système régulatoire. Nous reviendrons sur ce sujet dans une autre publication.

L’étude de VAN SOLDT dans le *BSA* (1988), concernant les attestations cassites du *namkarum* a livré, en résumé, les points suivants :

- le *namkarum* part d’un cours d’eau important ;
- c’est une structure creusée (*ljerā*) par l’homme ;
- il pouvait être ouvert et fermé selon les besoins de l’irrigation bien qu’il est probable qu’il ne servait pas directement à l’irrigation mais qu’il était utilisé pour remplir un *natbaktu* ;
- il pouvait être assez long et irriguer différents champs, voire même un *tamirtu* entier.
Enfin, des références reprises dans le CAD s.v. et tirées de textes en dehors de notre corpus on peut encore dégager les caractéristiques suivantes:

- le caractère artificiel du namkarum :

 \[\text{ana namkarim ḫerêm qātam aṣṭakan} \quad \text{je viens de commencer à creuser un namkarum (TIM 2, 4 : 5 = AbB 8, 4).} \]

- le namkarum est un moyen d’irriguer les champs:
 un champ incultivable qui n’a ni atappum, ni namkarum, ni digue (kalû) (Kudurru, MB, MDP 10 pl. 11 i 5).

- le namkarum pouvait servir de régulateur en cas de forte crue:

 \[\text{mû màdu namkarî ša ana appârim šaknu} \quad \text{il y a beaucoup d’eau, ouvrez les} \]
 \[\text{putûma appâram ša itāt Larsa mē mulli} \quad \text{namkarums qui donnent sur le marais} \]
 \[\text{et remplis le marais autour de} \]
 \[\text{Larsa (OECT 3, 7 : 6 = AbB 4, 85).} \]

\[\text{šumma nāru gapšatma mûša ana} \]
\[\text{namgarāti la īrubu} \quad \text{si une rivière est ‘gonflée’ mais que} \]
\[\text{son eau n’entre pas dans les namkarums} \]
\[\text{il y aura une inondation qui ne} \]
\[\text{pourra être contenue) (Alu, SB, CT 39, 19, 125).} \]

V. BIBLIOGRAPHIE ET ABRÉVIATIONS

\[\text{AbB 8 = CAGNI, L., 1980 : Briefe aus dem Iraq Mueseum (TIM II), Leyde} \]
\[\text{AbB 12 = VAN SOLDT, W.H., 1990 : Letters in the British Museum, Leyde.} \]
\[\text{Ach. Sup. = VIROLLEAUD, C., 1910 : L’astrologie chaldéenne, Supplément IX-X, Paris.} \]
\[\text{AHw = VON SODEN, W., 1965-74 : Akkadisches Handwörterbuch, Wiesbaden.} \]
\[\text{APR = MEISSNER, B., 1893 : Beiträge zum altbabylonischen Privatrecht, Leipzig.} \]
\[\text{BBVOT 1 = ARNAUD, D., 1989 : Altbabylonische Rechts- und Verwaltungsurkunden, Berlin.} \]
\[\text{BDHP = WATERMAN, L., 1916 : Business Documents of the Hammurapi Period from the British Museum, Londres.} \]
\[\text{BE 6/1 = RANKE, H., 1906 : Babylonian Legal and Business Documents from the Time of the First Dynasty of Babylon, Chieffy from Sippar, Philadelphie.} \]
\[\text{BE 6/2 = POEBEL, A., 1909 : Legal and Business Documents from the Time of the First Dynasty of Babylon, Chieffy from Nippur, Philadelphie.} \]
\[\text{BEWSHER 1885 = SELBY, W.B., COLLINGWOOD, W., BEWSHER, J.B., Surveys of Ancient babylon and the Surrounding Rains with Part of the River Tigris and Euphrates...in 1860 to 1865, Londres, 6 feuilles publiées en 1885, British Museum.} \]
Le namkarum. Une étude de cas dans les textes...

CAD = The Assyrian Dictionary of the Oriental Institute of the University of Chicago, Chicago, Glückstadt, 1956-.

Chains of Transmission = TANRET, M., JANSSEN, C. (à paraître).

CT 4 = PINCHES, Th.G., 1898 : Cuneiform Texts from Babylonian Tablets in the British Museum, Part IV, Londres.

CT 6 = PINCHES, Th.G., 1898 : Cuneiform Texts from Babylonian Tablets in the British Museum, Part VI, Londres.

Di = D(ér) inscriptions : Catalogue des documents écrits trouvés lors des fouilles de la BAEI à Tell ed-Dér ; il a été dressé par L. De Meyer et contient nombre de détails et de transcriptions.

LTBA 2 = VON SODEN, W., 1933 : Die akkadischen Synonymenlisten, Berlin.

MDP 10 = SCHEIL, V., 1908 : Textes élamites-sémitiques, quatrième série, Paris.

n° 564-842 = vol. II, Part V. Documents without Date or with Date Lost, 1996.

TANRET, M., (à paraître): The Tablet and the Field.

TLB 1 = LEEMANS, W.F., 1954-64: Old Babylonian Legal and Administrative Documents, Leyde.

CANAUX PALEO-BABYLONIENS:
LE DOSSIER DU CANAL ÚBIL-NUHŠAM DANS LA PROVINCE DU YAHRURUM INFERIEUR *

par Denis LACAMBRE **

Comme on le sait, le développement de l’agriculture en Mésopotamie reposait sur un système d’irrigation complexe, qui comprenait un important réseau de canaux. À la période paléo-babylonienne, un canal appelé Úbil-nuhsam (“Il a apporté l’abondance”) nous est connu à l’époque du roi de Babylone Samsu-iluna (1749-1712 av. J.-C.) ¹.

Ce cours d’eau est mentionné dans le dossier de la gestion des palmeraies royales de la province du Yahrurum inférieur (Yahrurum šaplûm), réuni par D. Charpin et M. Stol ². Malheureusement, ces documents sont issus de fouilles clandestines et on n’en connait plus l’origine précise ³.

Les attestations relatives à ce canal ont été réunies progressivement. Elles ont d’abord été signalées dans l’étude de D. Cocquerillat sur les palmeraies à l’époque paléo-babylonienne ⁴, puis dans le RGTC ³ ⁵. En 1981, D. Charpin et J.-M. Durand, à

* Je voudrais remercier G. Colbow pour m’avoir permis d’obtenir une copie de l’article Grant 1938. Je suis reconnaisant à D. Charpin de l’aide qu’il m’a apportée dans la résolution de difficultés que j’ai rencontrées à la lecture de certains textes, à M. Stol pour m’avoir envoyé des références complémentaires et à J. Goodnick Westenholz (Chicago) et à W. Hallo (Yale) pour m’avoir autorisé à utiliser le résultat de leurs collations. Enfin, je voudrais remercier O. Tunca pour son aide et ses conseils tout au long de l’élaboration de cet article.

** Université de Liège.

⁵ Cf. RGTC 3, 313, s.v. Úbil-nuhsam.

Changing Watercourses in Babylonia.
Towards a Reconstruction of the Ancient Environment in Lower Mesopotamia 1
(= MHEM 5/1), Ghent, Chicago, 1998, 133-146.
l'occasion de la publication de textes du Louvre, avaient rassemblé l'ensemble des références, à l'exception de trois attestations supplémentaires issues de YOS. On note la dispersion dans les collections du monde entier de tablettes qui appartiennent au même dossier. Les documents se trouvent aussi bien à Chicago, au Louvre, à Yale, que dans des collections privées.

Au total, on dispose d'onze attestations du canal Úbil-ubaham situé dans la province du Yahurum inférieur. À ces tablettes qui mentionnent expressément le nom du canal, on peut ajouter d'autres références qui se rattachent aux mêmes dossiers.

On notera, en outre, que l'usage du nom de ce canal n'était pas limité à la Babylone, puisqu'on le retrouve aussi dans deux documents du royaume d'Ešnunna.

On présentera dans un premier temps le détail de l'ensemble des attestations et l'analyse du nom de ce canal, puis on abordera le problème de sa localisation, et enfin on donnera l'ensemble des indications topographiques que l'on a pu réunir.

1. LES ATTESTATIONS DU CANAL ÚBIL-NUHŠAM

1.1. Le canal Úbil-ubaham dans la province du Yahurum inférieur

Les onze attestations connues du canal Úbil-ubaham, sont toutes datées du roi Samsu-iluna, entre la 2e année de son règne (BIN 2 77, du 20/ix/Si 2) et la 28e année de son règne (LANGDON 1930, 83, du 5/iii/Si 28).

On peut noter qu'on ne trouve pas moins de dix graphies différentes qui sont réunies ci-dessous :

6 Cf. Charpin et Durand 1981, 27-29 : AO 10333 : 2 (F) ; BIN 2 77 : 5 (A) ; BIN 7 182 : 6 (D) ; Grant 1938, 242, no 9 : 5 (G) ; Langdon 1930, 83 : 2 ; Langdon 1934, 557 : 3 (C) ; YOS 12 434 : 6 (H), auxquelles on rajoutera Grant 1938, 232, no 4 : 2 (cf. RGTC 3, 313).
7 YOS 12 298 : 2 ; YOS 12 440 : 1 ; YOS 12 516 : 2.
8 Les tablettes éditées dans Grant 1938 se trouvent désormais à l'Institut Oriental de l'Université de Chicago (où une nouvelle numérotation en A. leur a été donnée), d'après Stol 1976, 55 et n. 1. Ainsi, on a désormais Grant 1938, 232, no 4 = A.32138 et Grant 1938, 242, no 9 = A.32144.
10 Il s'agit des références issues des volumes BIN 2, BIN 7 et YOS 12. Voir aussi Beckman 1995, 2, n. 10 qui rappelle que des textes inédits, qui viennent compléter les dossiers établis dans Charpin 1981, se trouvent encore à Yale.
11 Il s'agit des deux tablettes éditées dans Langdon 1930, 83-84 et Langdon 1934, 556-559.
1.2. Les différents dossiers

Les textes qui mentionnent le canal Úbil-nuhšam ont été regroupés en quatre grands dossiers, qui ne sont pas sans liens entre eux.

1.2.1. Warad-Tispak, propriétaire et témoin (Si 6-Si 8)

Le texte YOS 12 174 (15/iii/Si 6) est un contrat de location d’un champ voisin de celui de Warad-TISPak, qui était lui-même situé près du canal Úbil-nuhšam, d’après

12 La ligne a été collationnée le 01/03/99 par W. Hallo.
13 Variante signalée dans CHARPIN 1981, 544. Le signe ŠA n’est pas présent sur la tablette d’après la collation de la ligne effectuée par W. Hallo le 01/03/99.
14 La ligne a été collationnée le 29/01/99 par J. Goodnick Westenholz que je cite ici: “There is no UH sign on line 2 of A.32138 nor is there any room for it. The line wraps around the tablet with ŠA-AM on the right edge.”
15 La date de ce texte a été donnée dans CHARPIN et DURAND 1981, 28.
16 Cette lecture est donnée en fonction de la copie de la ligne que m’a fait parvenir W. Hallo le 01/03/99. D’après lui, il est possible que le premier signe soit un TI, ce qui coïnciderait avec le duplicat de ce texte (GRANT 1938, 242, no 9 : 5 ; cf. YOS 12, 17). La lecture proposée par CHARPIN et DURAND 1981, 28 (H : gû ša-[a][b]-nu-[<uh>]-[ši], qui est la même que celle de l’index de YOS 12, 71), ne semble plus devoir être retenue.
17 La ligne a été collationnée le 29/01/99 par J. Goodnick Westenholz que je cite ici: “The signs of A.32144 (...) reflect the copy and there is no question that it is a TI sign and not an Š. This line (...) wraps around the tablet over the right edge and on to the reverse of the tablet. The TI sign is the first sign on the right edge and Š is on the reverse.” Cela confirme les lectures proposées antérieurement, cf. RGTC 3, 313 (š)i-bi-nu-ul-ši); CHARPIN et DURAND 1981, 28 (G : gû ši-bi-nu-uh-ši) et semble se retrouver dans le duplicat de ce texte (YOS 12 434 : 6 ; cf. YOS 12, 17).
YOS 12 298 ([...]/iv/Si 8). On peut noter que le même formulaire se trouve dans les deux textes 18.

1.2.2. Locations de champs par Warad-Šurinni (Si 20-Si 23)

Warad-Šurinni est mentionné dans un texte de location de champs, d’après YOS 12 398 : 5 (16/ii/Si 20) et dans un texte de location d’un verger, d’après YOS 12 440 : 5 (30/xii/Si 23).

1.2.3. Locations de champs près du canal Ubil-nuhsam en Si 28

On a réuni dans ce dossier deux contrats de locations de champs inondables (a-ša ú-sal), YOS 12 516 (4/iii/Si 28) et LANGDON 1930, 83 (5/iii/Si 28).

1.2.4. Le dossier des Rababeens (Si 2-Si 5, Si 7-Si 8, Si 23 et Si 26)

Un quatrième dossier plus important est celui de la location du (ou des) vergers et de champs de membres de la tribu des Rababeens près du canal Ubil-nuhsam, dans le cadre d’attributions de terre pour la mise en culture de palmeraies. Ce dossier est connu depuis longtemps, à travers les travaux de B. Landsberger 20, de D. Cocquerillat 21 et de M. Heltzer 22. D. Charpin et M. Stol ont donné l’essentiel de la bibliographie dans leur compte rendu de YOS 12 23, qui est à compléter par l’étude de D. Charpin et J.-M. Durand 24, qui comprend deux nouveaux textes du Louvre.

Dans l’ordre chronologique, on peut réunir les références suivantes :

Si 2 à Si 5 : BIN 2 77 : 1-6 (20/ix/Si 2) ; AO 10340 : 1-3 (1/xii/Si 2) ; LANGDON 1934, 557 : 1-3 (10/xii/Si 3) ; BIN 7 182 : 1-7 (24/xii/Si 4) ; YOS 12 126 : 1-5 (5/ii/Si 5) ; AO 10333 : 1-5 (-/iv/Si 5).

18 Cf. CHARPIN 1981, 546.
19 Cf. CHARPIN 1981, 546.
20 Cf. LANDSBERGER 1967, 57.
23 Cf. CHARPIN 1981, 521 (archives A 8) ; STOL 1982, 162, n. 3.
Canaux paléo-babyloniens : Le dossier du canal Ùibil-nuhšam...

A ces documents qui mentionnent directement le verger des Rababéens, on peut adjoindre les textes suivants qui appartiennent au même dossier et qui datent des années Si 5-Si 8 et Si 26 : YOS 12 135 (20/iv/Si 5) et YOS 12 217 (-/iii/Si 7), d’après CHARPIN 1981, 521 (archives A 8) ; TLB 1 205 (1/v/Si 8) ; TIM 5 40 ([…]/iii/Si 26), UGNAD 1925, 95 : BJ 91 (sans date), d’après STOL 1982, 162, n. 3.

1.3. Le canal Ùibil-nuhšam dans le royaume d’Èšnunna

<table>
<thead>
<tr>
<th>Graphie</th>
<th>Graphie complète</th>
<th>Référence</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibin-nuhši</td>
<td>pas-i-bi-in-nu-uh-ši</td>
<td>MUHAMED 1992, no 9 : 2 27</td>
<td>(Narām-Sin 28)</td>
</tr>
<tr>
<td>TIBIN-nuhši</td>
<td>ti-bi-in-nu-1uh-ši 1</td>
<td>DEJONG ELLIS 1972, 67, no 68 : 12</td>
<td>—</td>
</tr>
</tbody>
</table>

Ces deux références ne seront pas retenues dans notre étude, du fait de leur provenance (royaume d’Èšnunna) ou de leur datation (MUHAMED 1992, no 9).

2. LE NOM DU CANAL

2.1. Sens et graphies

Le nom du canal doit sans doute se comprendre comme : “Il a apporté l’abondance”. Il faut supposer que le sujet sous-entendu est un des rois de Babylone. Dans l’histoire mésopotamienne, on trouve de multiples noms d’années qui commémorent les travaux d’irrigation entrepris par les souverains. On connaît d’ailleurs plusieurs mentions de canaux portant un nom similaire à celui étudié ici-même dans les noms d’années des souverains de la Ire dynastie de Babylone 29. D’autre part,

26 Référence communiquée par M. Stol. Il s’agit de la lettre IM 52443, envoyée par Nawram-šarûr à Nanna-mansum.
27 Cf. MUHAMED 1992, 41-42 (trs. et trd.), Pl. 13-14 (copies) et Pl. 45 (photos).
28 On trouve un serment jure par Tišpak et par Narām-Sîn aux l. 13-14.
l'abondance qu’apporte et que fait régner le monarque parmi ses sujets est un thème classique de l’idéologie royale 30.

Parmi les onze attestations que l’on a réunies, on note une grande diversité dans les graphies. Ainsi, la marque de la mimiation après nuḫšum n’est présente que dans quatre attestations (BIN 2 77 : 5 ; GRANT 1938, 232, no 4 : 2 ; LANGDON 1930, 83 : 2 et peut-être YOS 12 298 : 2). Ensuite, on remarque que l’emploi des signes diffèrent dans plusieurs cas : on a le signe BI (YOS 12 440 : 1) à la place de BI, le signe ÚH (AO 10333 : 2) à la place de UH, et le signe BIL à la place de BI-IL (YOS 12 516 : 2).

L’oubli de signes est aussi à signaler : le signe UH a été omis dans deux attestations (GRANT 1938, 232, no 4 : 2 ; YOS 12 434 : 6) ; le signe IL est peut-être manquant dans GRANT 1938, 242, no 9 : 5 ; la forme verbale n’a pas été inscrite dans LANGDON 1934, 557 : 3.

On note encore l’assimilation du -/ de la forme verbale au n- qui suit, phénomène qui est attesté avec certitude dans deux de nos références (GRANT 1938, 232, no 4 : 2 ; YOS 12 298 : 2) 31.

Enfin, il faut évoquer la proposition de D. Charpin et J.-M. Durand 33 de voir dans la désignation iŋ-nin-hé-gál qui se trouve dans AO 10340 : 3 (1/xii/Si 2), une variante du nom de notre canal. Ce texte appartient aux dossiers des Rababéens, où le canal Ubil-nuḫšam est abondamment mentionné. Cependant, si on peut trouver l’équivalence dans les listes lexicales entre le sumérien hé-gál et l’akkadien nuḫšum 34, il ne semble pas possible de trouver ici une traduction sumérienne du nom akkadien de ce canal. La proposition d’en faire une autre désignation du canal Ubil-nuḫšam ne sera donc pas retenue. On a supposé qu’il s’agissait d’un autre cours d’eau situé à proximité.

31 Pour un phénomène comparable, voir aussi les attestations de Mé-Turan (Muhammad 1992, no 9 : 2) et de Šaduppum (Dejong Ellis 1972, 67, no 68 : 12).
32 Cf. MSL 11, 26, l. 24" : iŋ-lāl-ab-uš = tu-biš nu-uh-ša et ibid., 40, l. 14 : iŋ-lāl-ab-uš = tu-biš nu-uh-ša (références que je dois à M. Stol). Voir aussi AHw., 1451a (s.v. w/abāl(m)) II.1b) ; CAD N/2, 319a (s.v. nuḫšu). On remarquera qu’une graphie analogue se trouve dans l’exemple de Tell Harmal (Dejong Ellis 1972, 67, no 68 : 12).
34 Cf. par exemple CAD H, 167 (s.v. ḫegallu) et ibid., 168a pour les différents noms de canaux qui contiennent hé-gál dans leur nom.
Canaux paléo-babyloniens : Le dossier du canal Ūbil-nuhšam...

2.2. Indication du type de canal

Dans huit attestations sur onze, devant le nom de ce canal on trouve le déterminatif 𒊏 (nārum en akkadien), ce qui est la marque d’un canal de grande taille. Ce déterminatif est présent dans les textes à partir du 10/xii/Si 3 (LANGDON 1934, 557 : 3), jusqu’au 5/iii/Si 28 (LANGDON 1930, 83 : 2).

Dans deux cas, on trouve le déterminatif 媾 (palgum) avec BIN 2 77 : 5 (20/ix/Si 2) et BIN 7 182 : 6 (24/xii/Si 4). Ce terme a été récemment traduit par “fossé d’irrigation” 35. Il s’agit en tout cas d’un canal de moindre importance. On peut noter qu’il s’agit de deux attestations datées des débuts de notre corpus et on peut se demander, à titre d’hypothèse, si le canal n’a pas été élargi par la suite.

Seule la référence YOS 12 516 : 2 (4/iii/Si 28) ne comporte aucun déterminatif.

L’analyse de l’ensemble de ces attestations semble indiquer que l’on se trouve en présence d’un canal de grande taille.

3. UN CANAL DE LA PROVINCE DU YAHRRUM INFERIEUR

3.1. La province du Yahrurum inférieur

La province du Yahrurum inférieur a été située dans un triangle délimité par les villes de Kiš, Marad et Dilbat par W.F. Leemans 36. Cette localisation a été reprise dans les études de D. Charpin 37 et de M. Stol 38.

Cette proposition repose notamment sur l’étude de SVJAD 137 39 qui dresse l’inventaire des vergers de cette région sous la responsabilité du chef-jardinier (sandanakkum) Mär-Babilim 40. Ce document constitue la base des renseignements géographiques dont nous disposons sur la région du Yahrurum inférieur. Malheureusement, le canal qui fait l’objet de notre étude n’apparaît pas dans la partie conservée de la tablette.

Les éléments qui ont permis de situer ce cours d’eau dans la province du Yahrurum inférieur reposent d’abord sur les regroupements archivistiques effectués par D. Charpin, qui montrent que tous les textes qui mentionnent ce canal appartiennent à la gestion des palmeraies de la province du Yahrurum inférieur 41.

36 Cf. LEEMANS 1958, 140, n. 1.
37 Cf. CHARPIN 1981, 527-528 et n. 8 ; CHARPIN 1992, 214.
38 Cf. STOL 1982, 162, n. 4.
39 Cf. RIFTIN 1937, Pl. 85-86, no 137.
41 Cf. CHARPIN 1981, 519-529 (archives A et B).
Un autre indice nous est donné par la proximité entre le canal Úbil-nuhsam et le canal Amatum qui apparaît dans un des textes de notre dossier (BIN 7 182 : 6-7). Or, on sait que le canal Amatum était proche de la ville de BaDrum, située dans cette province. Le canal Úbil-nuhsam était donc un des multiples canaux qui irriguaient la province du Yahrurum inférieur.

3.2. Une mention dans un nom d’année de Samsu-iluna ?

On a noté que toutes les attestations que l’on peut rattacher à la province du Yahrurum inférieur, datent du règne du roi de Babylone Samsu-iluna. On peut alors se demander si le nom de ce canal ne renvoie pas à de grands travaux que le souverain aurait engagés dans cette région, proche de la capitale Babylone, et qu’il aurait ensuite commémorés dans un de ses noms d’années.

Dans un premier temps, on avait pensé faire le lien entre une variante du nom du canal qui se serait trouvée sur le texte YOS 12 434 : 6 (d’après la lecture proposée dans l’index de YOS 12 : “ID Na-qá-ab-nu-<ub>-si” et le nom de la 3e année de règne de Samsu-iluna qui mentionnait un canal nommé Samsu-iluna-nagab-nuhši (“Samsu-iluna-est-la-Source-de-la-Prospérité”). On retrouve ce canal mentionné dans le nom de sa 26e année. Ce rapprochement aurait été d’autant plus intéressant que par une variante du nom de l’année 11 d’Ammišaduqa (1635 av. J.-C.), on apprend que ce canal se trouvait près de l’Euphrate : “Année où Ammišaduqa a construit Dūr-Ammišaduqa sur la rive du canal Samsu-iluna-nagab-nuhši, à l’embouchure de l’Euphrate”.

Cependant, on a vu plus haut que la lecture de YOS 12 434 doit être corrigée d’après la collation de la ligne 6, la lecture proposée du duplicat de ce texte (GRANT 1938, 242, no 9 : 5) et l’ensemble des attestations qui ont été réunies plus haut.

42 Cf. CHARPIN 1981, 525, 528.
45 Cf. YOS 12, 71. Cette lecture a été suivie dans CHARPIN et DURAND 1981, 28.
46 Cf. ÚNGNAD 1938, 182 (sub no 148) ; CAD N/1, 110b (s.v. nagbu A.2d) ; CAD N/2, 319b (s.v. nūḫšu) ; RGTC 3, 306 (s.v. Samsuiluna-nagab-nuhši-niši) ; HORSNELL 1984, 29-30. Pour les noms d’années en général, on peut se reporter à la base de données réunie par M. Sigrist et P. Damerev que l’on trouve sur le site internet de l’Institut Max-Planck à Berlin (http://www.mpiwg-berlin.mpg.de/Yearnames/yn-index.htm).
47 Cf. ÚNGNAD 1938, 184 (sub no 171) ; CAD N/1, 110b (s.v. nagbu A.2d). On trouve aussi une mention d’un canal appelé Samsu-iluna-hegal (“Samsu-iluna-[est ou : apporte]-l’Abondance”), dans le nom de la 26e année du roi Samsu-iluna, cf. ÚNGNAD 1938, 182 (sub no 149) ; RGTC 3, 306 (s.v. Samsuiluna-hegal) ; HORSNELL 1984, 30.
Canaux paléo-babyloniens : Le dossier du canal Ūbil-nuḥšam...

Il n'est donc pas possible d'établir un lien certain entre un nom d'année de Samsu-iluna et le canal qui fait l'objet de notre étude. On perd une précieuse indication géographique, en attendant la publication de nouvelles données.

3.3. Les cours d'eau proches du canal Ūbil-nuḥšam

Si on ne peut rattacher le canal étudié à un lieu géographique précis, on peut par contre préciser la composition du réseau de canaux qui se trouvait alentour. A côté du canal Ūbil-nuḥšam, se trouvaient deux grands canaux appelés Amatum et Ninhegal, ainsi qu'un petit canal-atappum Gimillum. Notons également qu'on mentionne une digue dans un de nos textes.

3.3.1. Le canal Amatum

Un renseignement intéressant nous est donné par *BIN* 7 182 : 6-7 (24/xii/Si 4). On voit en effet qu'un verger était situé le long du canal Ūbil-nuḥšam et le long du canal Amatum 49. Or, on sait que le canal Amatum était un autre cours d'eau important de la région du Yahrurum inférieur, passant à proximité de la ville de BaDrum 50. On dispose en effet de tout un dossier, réuni par D. Charpin, qui rapporte la réquisition de travailleurs originaires du royaume du Malgium 51, pour effectuer la moisson et le ramassage de la paille sur le champ-biltum de Marduk-muṣallim 52, situé le long de ce canal.

3.3.2. Le canal Ninhegal

Le canal Ninhegal est mentionné dans le texte AO 10340 : 3 53 (1/xii/Si 2) qui fait partie du dossier des Rababéens. On a vu plus haut qu'il fallait distinguer ce cours d'eau du canal Ūbil-nuḥšam, bien qu'il soit proche lui aussi du verger des Rababéens.

3.3.3. Le canal Gimillum

Parmi les différents cours d'eau situés à proximité du canal Ūbil-nuḥšam, on trouve dans LANGDON 1934, 557 : 2 (10/xii/Si 3), la mention d'un canal-atappum appelé Gimillum 54.

49 D'après une restitution de *BIN* 7 182 : 7 proposée dans CHARPIN 1981, 528, n. 11. On a donc : (1) 1 (bûr) 1 (esē) gân ṣīḵiri6 (…) (6) sag-ki an-ta paš-ū-bi-il-nu-uh-ša (7) ʿā sa-g-ki ki-ta i-r<ā>-ma-tim.
50 Cf. CHARPIN 1981, 525, 528.
51 Cf. CHARPIN 1981, 525 ss (archives B 8), 528 et plus récemment CHARPIN 1992, 218, n. 75.
52 Cf. CHARPIN 1981, 523-524 (tableau) et 525 ss.
53 AO 10340 : (1) ṣīḵiri6 lū-meš ra-ba-ba-iški (2) ru-ūs šu-HA (3) ʿū-nin-hē-gāl.
54 LANGDON 1934, 557 : (1) 2 (esē) gân ṣīḵiri6 ra-ūs šu-i-HA1 (2) ū-s-sa-du a-tap-pa-um gi-mil-lum (3) a-ah i-r-nu-uh-ši. Pour la lecture de la l. 1, cf. CHARPIN et DURAND 1981, 28.
Un canal désigné sous le nom de *atappum* était un canal secondaire qui devait aboutir à un cours d'eau de plus grande importance, ici sans doute le canal Ùbil-nuhsâm (mentionné dans LANGDON 1934, 557 : 3). Ceci montre bien le rôle majeur de notre canal dans le système d'irrigation de la région du Yahrurum inférieur.

La dénomination de ce canal secondaire a pu être faite en fonction d'un particulier, appelé Gimillum, qui pourrait être le propriétaire d'un champ qui se trouvait à proximité de ce cours d'eau.

3.3.4. Digue/levée de terre (e)

Une levée de terre (e), qui devait se trouver le long d’un canal, est mentionnée dans *YOS* 12 217 : 2 57 (-/iii/Si 7). Ce texte a été rattaché au dossier des Rababéens.

4. LES AUTRES INDICATIONS DE LOCALISATIONS

Un certain nombre d’indications de localisations apparaissent dans les textes citant le canal Ùbil-nuhsâm et dans les dossiers qui s’y rattachent. On en a dressé la liste ci-dessous.

4.1. *Les voisins directs du canal*

Les possessions des individus ou des groupes qui ont été rassemblées dans cette partie sont toutes situées expressément sur la rive du canal Ùbil-nuhsâm.

Adad-kûm-anâku : son terrain est voisin d’un champ (a-ša) loué sur la rive du canal Ùbil-nuhsâm dans AO 10333 : 3 (-/iv/Si 5).

Individus du Malgium (erín-meš lû-sig₄ ki) : un verger (gi₉-kiri₉) leur appartenant est mentionné dans *BIN* 7 182 : 4 (24/xii/Si 4) 58.

Nidnat-Sîn : il possédait un verger d’après *YOS* 12 440 : 1-4 (30/xii/Si 23).

Rababéens : ils possédaient un ou des vergers d’après : *BIN* 2 77 : 1-6 (20/ix/Si 2); LANGDON 1934, 557 : 1-3 (10/xii/Si 3); *BIN* 7 182 : 1-7 (24/xii/Si 4); *YOS* 12 217 : 3-4 (1-2/iv/Si 4). 57

Canaux paléo-babyloniens : Le dossier du canal Úbil-nuħšam...

434 : 1-6 (15+x7/x/Si 23); GRANT 1938, 242, no 9 : 1-5 (18/x/Si 23). Un champ leur appartenant est mentionné dans AO 10333 : 1-5 (-/iv/Si 5).

Soldats du roi (erí-n-meš ka-kéš lugal) : ils occupaient un verger voisin de celui des Rababéens, d’après BIN 2 77 : 4 (20/ix/Si 2) et BIN 7 182 : 5 (24/xii/Si 4).

Warad-Tišpak 60 : il possédait un champ situé près du canal Úbil-nuħšam, d’après YOS 12 298 : 1-3 ([…]/iv/Si 8), et à proximité de celui Ibni-Adad, d’après YOS 12 174 : 1-2 (15/iii/Si 6).

4.2. Les voisins proches

Les personnes suivantes sont mentionnées ici car, même si leurs champs ou leurs vergers ne sont pas situés près du canal Úbil-nuħšam, on peut rattacher ces textes aux dossiers mentionnés ci-dessus et en déduire que leurs terres n’étaient pas très éloignées de ce cours d’eau.

École (é-dub-ba) : un champ de l’école (a-ša é-dub-ba), voisin du verger des Rababéens, est mentionné dans YOS 12 126 : 3 (5/iii/Si 5).

Ibni-Adad : le champ qu’il possède d’après YOS 12 174 : 1-4 (15/iii/Si 6) devait se trouver à proximité du canal, puisqu’il était voisin de Warad-Tišpak.

Issu-ariq : d’après YOS 12 135 : 1-3 (20/iv/Si 5), son champ était proche de celui de Nabium-malîk.

Kaspusa et les jardiniers 61 : on leur loue un champ, d’après TIM 5 40 : 1-3 ([…]/iii/Si 26), texte qui a été rattaché au dossier des Rababéens.

59 On proposera la lecture suivante : si-im-ti-kû-l-babbar’-um’ (l. 3 et 4) contra LANGDON 1930, 84 : 3-4, “Si-im-ti-ḫa-ra-du(?)”.

60 Pour la lecture de ce nom propre, cf. CHARPIN 1981, 545.

61 TIM 5 40 : (2) (…) kas-q(KUM)-pu-ša (3) fiš1 nu giškiś-meš tap-pé-e-ša. On connaît un chef-jardinier (sandananakkum) de ce nom, d’après YOS 12 401 : 20 du -t/Si 21 (cf. CHARPIN 1981, 544), qui appartient aux archives B 9 (cf. ibid., 527, 541).
Wedum-qarrad: il possédait un champ, d’après TLB 1 205: 1-2 (I/v/Si 8), qui devait être proche du canal Úbil-nuhšam, d’après le rattachement de ce texte au dossier des Rababéens.

5. CONCLUSION

Dans cette brève étude, on a tenté de réunir l’ensemble des attestations du canal Úbil-nuhšam. Si on n’a pu déterminer la localisation géographique précise de ce cours d’eau, on a essayé de rassembler les différentes informations qui étaient en notre possession.

Ainsi, on sait que ce canal se trouvait dans la province du Yahrurum inférieur et qu’il devait être un des canaux importants de cette région. On a montré que d’autres canaux le rejoignaient, ce qui nous a permis de dresser une première esquisse d’une partie du réseau d’irrigation de cette province. D’autre part, on a pu constater que les terres cultivées le long de ce canal étaient aussi bien des champs que des vergers très certainement consacrés à la culture de palmiers. On peut noter que les statuts de ces terres étaient très variés, puisque des terrains appartenant à l’État cotoyaient les propriétés de particuliers.

Si on n’a pu arriver à une réponse définitive, une étude plus approfondie des textes de YOS 12 et des textes encore inédits (comme ceux de Yale) pourrait permettre d’avoir une idée plus complète de la géographie de la province du Yahrurum inférieur et de préciser la situation du canal à l’intérieur de celle-ci.

BIBLIOGRAPHIE ET ABREVIATIONS

BIN 2 = NIES, J.B., KEISER, C.E., 1920
BIN 7 = ALEXANDER, J.B., 1943

62 Les abréviations utilisées ici sont celles qui se trouvent réunies dans Northern Akkad Project Reports 8 (Gand, 1993), 49-65.
Canaux paléo-babyloniens : Le dossier du canal Úbil-nuhšam...

LANDSBERGER, B., 1967 : The Date-Palm and its By-Products According to the Cuneiform Sources (= AfO Beih. 17), Graz.

LANGDON, S., 1930 : « A Contract with New Date of Samsu-Iluña », RA 27, 83-84.

MSL 11 = REINER, E., CIVIL, M., 1974

RGTC 3 = GRONEBERG, B., 1980

RIFTIN, A.P., 1937: Staro-vavilonskie juridiceskie i administrativnye dokumenty v sobranijakh SSSR
 (Documents juridiques et administratifs paléo-babyloniens dans les collections soviétiques),
 Léningrad, Moscou.

Si = Samsu-iluna

SVJAD = RIFTIN, A.P., 1937

TIM 5 = VAN DIJK, J.J.A., 1968

TLB 1 = LEEMANS, W.F., 1954-1964

 ZA 36, 89-100.

VS 22 = KLENGEL, H., 1983

YOS 12 = FEIGIN, S.I., 1979
ARRIAN, Anabasis VII 21.1-4 AND THE PALLUKKATU CHANNEL

by Tom BOIY ** and Kris VERHOEVEN ***

In the seventh book of the Anabasis Alexandri, Arrian describes in detail how the Παλλακόπας-channel at the time of Alexander the Great was being used to divert superfluous water from the Euphrates to marshes west of the river in order to avoid floods:

XXI. "... ἐκπελεῖ ἐκ Βαβυλῶνος κατὰ τὸν Εὐφράτην ὡς ἐπὶ τὸν Παλλακόπαν καλοῦμενον ποταμόν. Αἵτις δὲ οὖσα τῆς Βαβυλῶνος σταθείς ὅσον ὄκτακοσύς, καὶ ἐστὶ διόρως αὕτη ἡ Παλλακόπας ἐκ τοῦ Εὐφράτου, οὐγά δὲ ἐκ πηγῶν τις ἄναχον ποταμοῦ. Ὡ γὰρ Εὐφράτης ποταμὸς δένῳ ἐκ τῶν Ἀρμενίων ὅρῶν χειμῶνος μὲν ἀρά προχωρεῖ κατὰ τὰς ὄχθας, ὅλα δὲ οὐ πολλοὶ ὄντος αὐτῶ τοῦ ὄδατος ἄρως δὲ ὑποφαίνοντος καὶ πολὺ δὴ μᾶλλον ὑπὸ τροπὰς ἄστινας τοῦ θέρους ὡς ἡ ἔλεγον ἐπιστρέφει μέγας τε ἐπέρχεται καὶ ὑπερβάλλει ὑπὲρ τὰς ὄχθας ἐς τὴν γῆν τὴν Ἀσσυρίαν. Τηνικαῦτα γὰρ αἱ χώνες αἱ ἐπὶ τοὺς ὄρεις τοῖς Ἀρμενίωις κατατρέχομεναι αὔξομαν αὕτω τὸ ὄδωρ ἐπὶ μέγα, ὅτι δὲ ἑπιπολὴς ἔστιν αὐτῷ καὶ ὑφήλιος ἡ ῥούς, ὑπερβάλλει ἐς τὴν χώραν, εἰ μὴ τις ἀναστομοσύνας αὕτων κατὰ τὸν Παλλακόπαν ἐς τὰ ἐκ τῆς ἐκτρέφεις καὶ τὰς λίμνας, αἱ δὲ ἀρχύμεναι ἀπὸ τοῦτός ἐς τὴν ἱερὰς ἐπὶ τῶν Ἀράβων γῆς καὶ ἐνθὲ μὲν ἐς τένακος ἐπὶ πολὺ, ἐκ δὲ τοῦ ἐς θάλασσαν κατὰ πολλὰ τε καὶ ἀφανῆ στόματα ἐκδιδοῦσι. Τετρακύλια δὲ τῆς χιλίων ἀμφὶ Πλευράδων μάλιστα δύσιν ὄλγος τὸ Ἐὐφράτης βέει καὶ οὐχὶ μὲν τὸ πολὺ αὐτοῦ κατὰ τὸν Παλλακόπαν ἐκδιδοὶ ἐς τὰς λίμνας. Εἰ δὲ τις μὴ ἀποφράξεις τὸν Παλλακόπαν αὕτης, ὡς κατὰ τὰς ὄχθας ἐκτρεπέις φέρεσθαι τὸ ὄδωρ κατὰ τὸν πόρον, ἐκένωσεν ἄν τὸν Ἐὐφράτην ἐς αὐτὸν, ὡς μηδὲ ἐπάρδεσθαι ἀπ' αὐτοῦ τὴν Ἀσσυρίαν γῆν."
"... (Alexander) sailed from Babylon along the Euphrates to the so-called river Pallacopas. This is some eight hundred stades away from Babylon, and it is a channel from the Euphrates, not a river that rises from its own springs. For the Euphrates river flowing from the Armenian mountains runs within its banks in the winter season, as the volume of the water is not large; but once spring just shows, and especially about the time of the summer solstice, its flow is great and it breaks its banks on to the Assyrian land. For it is then that the snows on the Armenian mountains melt and increase its volume enormously. Since the bed of the stream is lifted high up, it would overflow into the surrounding country unless it were given an outlet along the Pallacopas and so turned into the marshes and the lakes, which begin with this channel and continue as far as the land nearest to Arabia, and thence it runs mostly into lagoons and thereafter into the sea by unnoticed mouths. When the melting of the snow is over about the setting of the Pleiades, the level of the Euphrates is low, and yet all the same most of the water flows by the Pallacopas into the lakes. If, then, the Pallacopas were not dammed in its turn, so that the water is diverted to run in the channel between its own banks, it would have drained off the Euphrates into it, and then it would never water the Assyrian plain."

Appian\(^2\) mentions a river Pallakottas which leads the water away from the Euphrates and prevents the irrigation of Assyria. Strabo\(^3\) states that Alexander inspected several channels and he describes problems concerning a channel, the name of which is not mentioned, which links the Euphrates with marshes and lakes in the direction of Arabia. Both Strabo's and Arrian's stories were based on the Alexander history of Aristobulus.\(^4\)

Already at the end of the nineteenth century, A. Delattre and B. Meissner discovered that Arrian's Pallakopas channel was to be identified with the Pallukkatu channel known from cuneiform documents.\(^5\) On the basis of the Akkadian Pallukkatu, which occurs in numerous cuneiform tablets, they could clearly prove that Appian's notation Pallakottas was to be preferred above Arrian's Pallakopas.\(^6\) As far as the

\(^1\) Arrianus, *Anabasis* VII 21.1-4; the translation is based on BRUNT 1983, 277-279.
\(^2\) Appianus, *Bellum Civile* II 153.
\(^3\) Strabo XVI 1.11.
\(^4\) *FGrHist* 139 F 55 en 56.
\(^5\) Delattre 1888, 495 and Meissner 1896, 177-189. Meissner apparently did not know that Delattre had already suggested the identification with Pallukkatu eight years before his own article (Potts 1997, 42, n. 9). For more recently published tablets mentioning the Pallukkatu channel see Zadok 1985, 379 and Jursa 1995, 201-203.
\(^6\) Pliniius' "Pallacctam fluminem" (*Naturalis Historia* VI 118) already showed that Appian's notation was correct.
geographical situation is concerned, Arrian was misread by most researchers in the nineteenth century. Because of the phrase “κατὰ τὸν Εὐφράτην” used by Arrian they situated the Pallukkatu channel south of Babylon. Meissner already pointed out that “κατὰ” does not necessarily have to mean “down the Euphrates”, but can simply be translated as “along the Euphrates”. The verb “καταπλήω”, on the other hand, must be translated as “sailing down the river”. Only in VII 21.7 does Arrian make use of this verb, when he states that Alexander sailed to the channel and subsequently went on in the direction of Arabia through this channel (ἐπλευσε καὶ κατὰ αὐτὸν καταπλῆε). This passage allows for an interpretation in which Alexander headed north and at the beginning of the Pallukkatu channel sailed to the south. The most important argument is the logic of Arrian’s story which also dictates a northern position for the channel: if a channel to protect Babylonia from disastrous floods were to be situated at 800 stades to the south of Babylon, it would have been useless for the greater part of Babylonia because most of the important cities were located more to the north. A further argument used by Meissner in favour of a more northerly position for the Pallukkatu channel is the town of Pallukkat’s subordinate position to Sippar, as indicated in cuneiform documents from the Neo-Babylonian period. In addition, the great majority of contracts mentioning the Pallukkatu channel belong to the Sippar collections of the British Museum, which increases the probability of a Pallukkatu channel to the north of Babylon.

Both Delattre and Meissner situated the channel north of Babylon. Delattre placed the beginning at Hit, where the remains of an ancient channel were discovered. Meissner did not situate the Pallukkatu channel so far to the north, and on etymological grounds he accepted Fallūgah as the starting point of the channel. We will discuss the exact location of the channel later on.

7 See MEISSNER 1896, 180-183.
8 Nbn. 506 and Ner. 18 report the delivery of barley and the payment of tithes to the Eabbar.
9 82-9-18 and A.H. 83-1-18 (MEISSNER 1896, 186).
10 Despite these arguments some scholars in the twentieth century still located the Pallukkatu channel to the south of Babylon on the basis of Arrian’s testimony: MUSIL 1927, 279-280; HUTZEL 1974, 262 and BOSWORTH 1988, 58, n. 63. Most modern translations of Arrian also suggest a position to the south of Babylon: BRUNT 1983, 277 (in Brunt’s translation above we changed “down the Euphrates” to “along the Euphrates”); SAVINEL 1984, 243 and WIRTH and VON HINÜBER 1985, 589.
11 DELATTRE 1888, 472-475. It had already been suggested by NIEBUHR (1774, 223-225) that Hit was the starting point of the Pallukkatu channel.
12 The shift from Akkadian Pallukkatu to Syrian Pallugta to Arabic Fallūgah is quite acceptable (MEISSNER 1896, 186-187 and n. 1). The Semitic root PLG means “to divide” and can be considered an indication of a division of the river Euphrates (BARNETT 1963, 12). Until recently the identification with Fallūgah was generally accepted in academic literature; cf. e.g. BARNETT 1963, 11; GIBSON 1972, 24; EDZARD and FARBER 1974, 252-253 and GRONEBERG 1980, 272; contra: COLE 1994, 83 and n. 6 (see also n. 33). All these researchers believed that this channel was already known in the Old Babylonian period as the
Meissner not only proved that “Pallakottas” was the same as “Pallukkatu”, but he also demonstrated, via *Nbn.* 506, that the Pallukkatu channel was equipped with a sluice gate.\(^{13}\) Apparently the channel could be cut off from the Euphrates, thereby fulfilling an important condition for taking Arrian’s story seriously.

At this point, despite Meissner’s arguments, there still could not be any certainty about Arrian’s story on the diversion of superfluous waters from the Euphrates during springtime into marshes in the west. The cuneiform documents merely mention the Pallukkatu channel and its sluice gate and do not give any additional information on the hydrographical situation of the Euphrates.

To add further arguments to the discussion we can first of all compare *Anabasis Alexandri* VII 21.1-4 with data from Mesopotamian history. From the Old Babylonian period a letter\(^{14}\) from king Hammurabi to Šamaš-ḫāzîr describes a situation similar to the one in the story of Arrian. Hammurabi wrote to his subordinate that “the river streams further and there is much water”, which means that the flood had already passed Babylon, and that “Šamaš-ḫāzîr should open the channel which leads to the marshes in order to fill the marshes around Larsa”, thereby protecting the city from floodwaters. Although the situation just described took place in the south of Iraq, the system of diverting water from the Euphrates to avoid floods is exactly the same as described by Arrian for the Pallukkatu channel.

In an article on marsh formation in the Borsippa region Cole\(^{15}\) states that the system described by Arrian was already in use during the Neo-Babylonian and Achaemenian periods. The starting point of his argumentation is the observation of the existence of a marsh which had formed to the north of Borsippa between the eighth and fourth centuries BC. At the beginning of the sixth century BC, the dimensions of this marsh were so enormous that it was called *tāmtu*, the “Sea”.\(^{16}\) One of the city gates of Borsippa received the name “Sea Gate”, and this “Sea” was still documented at the time of Darius I.\(^{17}\) According to Cole, the water of this marsh must have been supplied by the Pallukkatu channel.\(^{18}\)

\(^{13}\) *Nbn.* 506 l. 2 : TA KÂ *(pal-la-ka-tum).*

\(^{14}\) *OECT* 3 7 = *AbB* 4 85.

\(^{15}\) *Cole* 1994, 81-109.

\(^{16}\) *TuM* 2/3 15 l. 2.

\(^{17}\) *VS* 3 161 l. 2.

\(^{18}\) “This body of standing water was so extensive by the reign of Nebuchadnezzar II that the inhabitants of the region began at that time to call it the “Sea”. It was probably fed by the Pallukkatu channel, which left the west bank of the Euphrates not far below Sippar and functioned, it will be argued, as an escape system for the river at flood” (*Cole* 1994, 83). “The texts do not inform us of the immediate reasons for
By way of comparison Cole gives the situation of the Euphrates in the nineteenth and early twentieth centuries AD. At that time the Euphrates divided into two branches, the Šatṭ al-Hindiyah and the Šatṭ al-Hillah (see Fig. 3). Until 1914 the bulk of Euphrates water flowed through the Šatṭ al-Hillah, but the dam at its bifurcation required the constant attention of the Ottoman authorities, because at the slightest neglect the river would wash away all human-made obstacles to find a more westerly bed, thus drastically decreasing the water level of the Hillah branch. Such a breakthrough would have meant the loss of much Euphrates water, which would have disappeared into marshes to the west of the river. According to travel accounts from the nineteenth century this happened several times. John Punnett Peters, for example, wrote after a visit to Babylonia:

"The Euphrates had been for some years flowing more and more into the Hindieh Canal, and thence into Abu Nejm and other great swamps. They told me that five years before, the revenues of the Mutessariflik, or province of Hillah, were eighty-five thousand Turkish liras, but in 1889 they were only ten thousand. This difficulty with the Hindieh Canal is an almost periodical one. From the remotest antiquity the Euphrates has broken down all dams and dispersed itself through the Hindieh into the great swamps, at uncertain intervals, depending upon the strength of the dam and the watchfulness of the government."19

Cole’s explanation and argumentation indeed suggest a situation similar to the one described by Arrian. However, it could not be proven on the basis of cuneiform documents that the Pallukkatu channel was indeed the waterway through which superfluous waters from the Euphrates were carried into the marshes.

The recent publication of the Astronomical Diaries20 allows us to accept for the Pallukkatu channel in the Hellenistic period a system similar to the diversion of floodwaters into the marshes around Larsa in the Old Babylonian period. At the same time we think we can prove that Cole’s conjecture concerning the Pallukkatu channel as a supply channel for marshes to the west of the Euphrates is correct.21

19 Peters 1897, 213.
21 The importance of the Astronomical Diaries in determining the use of the Pallukkatu channel was already noticed by Jursa 1995, 202, n. 394.
In addition to the town of Pallukkat, the Astronomical Diaries mention the Pallukkatu channel five times:

-332B Obv. 6': [...]se-ke-ri šá pal-lu-ka-[tu₄...]
-328 Obv. 26: [...]2 KUŠ 8 SI ina se-ke-er šá pal-lu-kāt GI[N...]
-324A Rev. 13': [...]pal-lu-kāt
-105D Flake 9': [...]IBILA-uk-[k[...]
-77B Obv. 26': ina se-ke-er šá IBILA-uk-kat [...]

Each time the Pallukkatu channel is mentioned in these documents it is in connection with the water level of the Euphrates at Babylon. Apart from astronomical observations the Diaries also furnish information on topics such as weather conditions, commodity prices, the water level of the Euphrates at Babylon and some historical notes. As far as the water level is concerned, they note when and how much the water rose or fell and when the water level remained unchanged. The earliest Diaries provide only relative water levels. It was not until the end of the fourth century BC that an absolute standard was introduced: the “na". The na was either a gauge or a measure indicating from a fixed point downwards the level of the Euphrates at Babylon. According to Hunger the fixed point was probably some high part of a sluice gate in Babylon from which the measurements were taken. When na equalled 0, there was an immediate danger of flooding in Babylon, but as the water level decreased, the higher the value of na became. In other words, the value of na is inversely proportional to the height of the water level. The fluctuations of the water level are measured in cubits and fingers, with 1 na equalling 4 fingers or 1/6 cubit.

An analysis of approximately 300 measures of na found in the Astronomical Diaries reflects some well-known phenomena. As expected, the highest water level of the Euphrates was around the months April-May. An examination of 29 cases with a na of less than 6 showed that 19 could be placed with certainty within the months April-May. In -156A Obv. 19' (April/May), -140A Obv. 19 (June/July) and -105A Obv. 13' (April/May) there was a na of 0 (na NU TUK). Apart from these 29 examples of high water levels there were ten situations described in the Diaries as peak flood and one of almost peak flood.

22 -373A Obv. 9'.
24 251 U.E. 2 (March), -246 Obv. 11 (April/May), -245A Obv. 11 (April/May), -207A Obv. 17 (April/May), -204C Rev. 12 (April), -197B Rev. 27' (end of March/beginning of April), -156A Obv. 19' (April/May), -140A Obv. 19 (April/May), -134B Rev. 8' (January/February), -105A Obv. 13' (April/May).
25 -567 Obv. 6. Some caution in regard to the number of high water cases is called for. The water level of April/May 141 BC, for example, is mentioned no fewer than three times in the figures above: in -140A Obv. 19 we find first a na of 0, then a na of 3 and eventually a peak flood is mentioned. April/May 157 BC is represented even more frequently: na-values of 4, 2 and 0 and a river level of 2 fingers above peak
The low water levels paint a picture which is much more disparate. In general we can say that the majority of low water levels are found around the months September-October, but some occur as early as August or as late as February. The highest na value is 39, which occurred in 123/2 BC. Furthermore, the Diaries twice exhibit the values 37 and 36. Starting from 35 there are more examples. In addition it is important to note that in -190D U.E. 1-2 the water level had increased by four fingers immediately before the na was 37, so we can add a na of 38 during the days before. A similar situation is found in -118A Rev. 18' (October/November), where a na of 33 is preceded by a rise in the water level of no less than 1 cubit, which means that the na was previously 39.

240 of these 300 water level data can be attributed to a month of the Julian calendar. The average of na for each month (see Fig. 1) gives the same picture as described above: high water in the months April-June and low water in August-November. The present-day regime has the same regularity (see Fig. 2).

Fig. 1. Water Level of the Euphrates in the Hellenistic Period Expressed in na/Julian Month.

26 -122D Rev. 9' (month unknown).
27 -190D U.E. 2 (November/December) and -178A Rev. 5' (August/September).
28 -186C Rev. 13 (February) en -77B Obv. 11' (October).
29 SLOTSKY (1997, 88-98) also analysed observations of the level of the Euphrates in the Astronomical Diaries, but only those found in combination with market quotations. The results, presented in Fig. 30 (idem, p. 94), are comparable.
The passage concerning the closing of the Pallukkatu channel in -332B (September) is too fragmentary to provide any useful information. -328 (October/November) on the other hand clearly states that there was an increase of 2 cubits and 8 fingers in the level of the Euphrates at a time when the Pallukkatu channel was closed. On the na scale this would mean a value of 14, which is quite substantial when one considers that the scale in question has only 39 units from its lowest to its (as far as we know) highest point. In -77B, finally, the closing of the Pallukkatu channel is even more directly linked with a low level of the Euphrates. The closing took place in the month Arahsamnu, and in the previous month there had been a na of 36, an exceptionally high value (which means low water level) in comparison with other water-level values at Babylon in the Hellenistic period. We do not have any explicit attestations of the opening of the Pallukkatu channel in springtime during times of high water, but the Astronomical Diaries at least prove that the Pallukkatu channel was closed when the water level of the Euphrates was too low.

As far as the opening of channels during springtime is concerned, the Astronomical Diaries provide some material for comparison. Similar to the passages which mention the closing of the Pallukkatu channel during times of low water. -108A Obv. 29' mentions the opening of a channel (?) (ina pe-te-e ša ID ḫi-ir²-[tî²] when there was a high water level (na = 4).

The point of departure of the Pallukkatu channel from the Euphrates and the exact position of its bed have not been fully clarified. We have already explained above that the channel must have been situated north of Babylon, as was correctly noted by Delattre and Meissner.

On the basis of its supposed etymology, Meissner situated the mouth of the Pallukkatu at present-day Fallūğah, and he was followed by almost the entire academic
world. This view is based solely on etymological arguments and does not take into account the geomorphological situation west of the present bed of the Euphrates. Etymology is without doubt useful in this context, but it has to be handled with care: shifts of habitation centres and consequently of geographical names occur frequently. If we consider the geomorphological situation west of the Euphrates at Fallūğah, a gypsiferous plate here makes any waterway on this side of the river impossible. A bit upstream from Fallūğah on the other hand, a clear depression is visible at the height of the present Ḥabbānīyah and Abū Dībbīs Lakes (see Fig. 3). This location would be perfect for a channel to divert superfluous water from the Euphrates, but the numerous attestations of the Pallukkatu channel in cuneiform tablets from Sippar makes a position so far to the north rather unlikely.

Another possible location for the Pallukkatu channel is the break in the gypsiferous spur which extends to a point some 25 km southeast of Sippar. The present-day Euphrates flows through this break. There is no way at present to know if the spur was already breached in the first millennium BC; there are no indications that it was, but there are no arguments against it either (see Fig. 3). This location must be considered as a more likely candidate; since it is situated in the vicinity of Sippar, the appearance of the channel in the tablets from this city is quite logical. The exact place where the Pallukkatu channel departed from the Euphrates remains unknown.

There is general agreement on the approximate location of the channel-bed further downstream. When the more eastern bed of the present-day Euphrates is considered, the most obvious location of the Pallukkatu channel is one coinciding approximately with the line of the present Hindiyah branch of the river.

Meissner’s research at the end of the nineteenth century and the new information on water levels in Babylon brought to light by the Astronomical Diaries have made it

30 See n. 12 above.
31 At present the main purpose of the Ḥabbānīyah lake is to store water for irrigation, but flood prevention is also an important task of this reservoir (Hatim 1977, 265). The only argument for such a northern location, apart from the etymology, is Arrian’s distance from Babylon of 800 stades (according to the Attic standard around 150 km). Along the ancient bed of the Euphrates 150 km north of Babylon would mean a location somewhere in the neighbourhood of the lakes and Fallūğah.
32 Cole (1994, 83 and n. 6) proposes a position below Sippar because he presumed, on the basis of a survey by the Belgian Archaeological Expedition to Iraq, that the gypsiferous desert spur was not yet breached in antiquity. At present he reviewed this theory and he thinks the break could already have taken place and a more northern position is possible (oral communication January 1998; see also Brinkman 1995, 22 and n. 27). Cole thinks that Nbn. 506 ll. 2-3 may be a clue to the location of the Pallukkatu channel: the mountain in “TA KĀ’ī-pal-la-ka-tum ... a-di kūr-e” might refer to the end of the spur, which is somewhat higher than the surrounding environment.
33 Gibson 1972, 24; Edzard and Farber 1974, 253 and Groneberg 1980, 272; contra G. van Driel, who questions the existence of a Pallukkatu channel departing from the right bank of the Euphrates and thinks that a left-bank channel makes more sense (Van Driel 1988, 128).
Fig. 3. Proposal for the Location of the Pallukkatu Channel.
possible to confirm Arrian’s story of diverting superfluous Euphrates water. When the water level of the Euphrates in springtime reached a level that was sufficiently high, the sluice gates of the Pallukkatu channel were opened to prevent floods in Babylonia, with the water being diverted into marshes, the existence of which has been shown by Cole. When the water level of the Euphrates was low, the Pallukkatu channel was closed again. Arrian’s explanation that there would otherwise be a shortage of irrigation water seems quite logical. The exact location of the channel-bed can not be deduced from cuneiform tablets. From a geomorphological point of view both the depression in which the Ḥabbāniyyah and Abū Dibbîs Lakes are located and the passage of the present-day Euphrates through a gypsiferous plate south of Sippar are likely candidates. Because of the appearance of the Pallukkatu channel in several cuneiform tablets from Sippar we prefer the latter possibility.

BIBLIOGRAPHY

FGrHist = JACOBY, F., 1923- : Die Fragmente der griechischen Historiker, Berlin and then Leiden.
GIBSON, McG., 1972 : The City and Area of Kish, Coconut Grove.

Ner = EVETTS, B.T.A., 1892: Inscriptions of the Reigns of Evil-Merodach (B.C. 562-559), Neriglissar (B.C. 559-555) and Laboroosarchod B.C. 555) (= BT 6B), Leipzig.

NIEBUHR, C., 1774: Reisebeschreibung nach Arabien II, Copenhagen.

PETERS, J.P., 1897: Nippur, or Explorations and Adventures on the Euphrates. The Narrative of the University of Pennsylvania Expedition to Babylonia in the years 1888-1890 1 (First Campaign), New York.

TuM 2/3 = KRÜCKMANN, O., 1933: Neubabylonische Rechts- und Verwaltungstexte, Leipzig.

ZADOK, R., 1985: Geographical Names According to New- and Late-Babylonian Texts (= RGTC 8), Wiesbaden.
GEOMORPHOLOGICAL RESEARCH IN THE MESOPOTAMIAN FLOOD PLAIN

by Kris VERHOEVEN *

"... the fluvial system is a physical system with a history."
(SCHUMM 1977, 10)

1. INTRODUCTION

In the context of the Belgian Archaeological Expedition to Iraq (1988-1990) the author had the opportunity to carry out a geomorphological reconnaissance survey of the immediate surroundings of the archaeological sites of Tell ed-Dēr, Abū Ḥabbah (Sippar), and Abū Qubūr, 20 km southwest of Baghdad. The field work consisted of descriptions of an elaborate hand-auger transect perpendicular to the course of an old river levee of the Euphrates. Granulometric analyses were done on some samples in the lab.¹

The study area had already been the subject of some geomorphological research carried out by Gasche, Nijs, De Meyer, Baeteman, and Paepe.² The authors focused on the geographical settings of the old river levees and flood basins, especially in relation to the archaeological remains and the old irrigation canals. A substantial part of their research is integrated into this contribution.

This article concentrates first on the geomorphology of the Mesopotamian flood plain in general (macro-scale). In this first part, comprising roughly the first half of the article, the main physiographical units of the Mesopotamian Plain are described, concentrating on the flood plain of the Euphrates and Tigris, including its general characteristics and morphology, as well as brief descriptions of the Euphrates-Tigris-Karūn deltaic complex and of the sedimentation history of the Gulf. This comprises Section 2. Then in Sections 3-4 of this first part are treated the principles governing changes in fluvial systems in general and the potential effects on river regimes of fluctuations in environmental conditions (as yet poorly understood). This, we believe, sets the stage and provides the backdrop for a detailed

¹ The field work was planned on the assumption that it was the start of a long-term project of field research on the reconstruction of the palaeo-environment and history of Mesopotamia. Appropriate sampling of key locations, especially for radiocarbon datings or proxy data records, were postponed to be taken at other field occasions. Unfortunately, after 1991 no field work could be done.
² GASCHE 1985, 1988; NIJS 1987; GASCHE and DE MEYER 1980; BAETEMAN 1980; PAEPE and BAETEMAN 1978; PAEPE 1971. See also Cole and Gasche in this volume for other general references relevant to the geomorphology of the flood plain.

* University of Ghent. I acknowledge with gratitude the support and comments of L. De Meyer, M. Tanret, G. Stoops, R. Nijs, H. Gasche, and S. Cole in this undertaking. I thank S. Cole for linguistic corrections as well. However, all statements, interpretations, and conclusions are mine alone.

introduction to, and treatment of, the main actors in the drama of the Lower Mesopotamian landscape: the Twin Rivers (Section 5).

In the second part of the article and comprising approximately its next quarter, the palaeo-fluvial environment of the northern part of the Euphrates-Tigris flood plain is treated in greater detail (meso-scale). Included are descriptions of the rivers’ present flow regime, the present topography of their flood plain in this region, the present and relict landforms, as well as present and past irrigation patterns (Section 6). This section is intended to provide the background and rationale for our geomorphological research program in the region of Tell ed-Der, Abū Ḥabbah, and Abū Qubûr.

Finally, in the last quarter of the article (Section 7), the auger transect itself is described and the identification of the old river courses of the Euphrates in the study area is considered (micro-scale).³

Based on this research, and with reference to the work of Cole and Gasche, conclusions are drawn and a general working hypothesis is proposed for the reconstruction of the fluvial landscape in the northern part of the Mesopotamian flood plain during the second half of the Holocene.⁴ Briefly stated, the author tentatively proposes that after the early-middle Holocene there was a gradual transition from a multi-channel anastomosing pattern in the Euphrates system in the study area to a single-channel meandering one. Based on the documentary record, this transition was not completed until sometime between the late Old Babylonian period and c. 900 BC (according to the conclusions of Cole and Gasche, a summary of which may be found in Section 7.5 below). After this transitional phase, the sedimentation pattern is strongly influenced by anthropogenic factors.

The author is well aware that in the absence of detailed profile-section descriptions, mineralogical, geo- and biochemical analysis, and radiometric data of the different sedimentary settings, no far reaching conclusions can be made. Therefore, any attempt to reconstruct, even in broad outline, the ancient landscape of this remote period can be only tentative. Needless to say, this hypothesis has to be modified with much more geoarchaeological research.⁵

2. GEOGRAPHICAL LOCATION AND MAIN PHYSIOGRAPHIC UNITS OF THE LOWER MESOPOTAMIAN PLAIN

The study area is part of what we call here the Mesopotamian meandering rivers flood plain. Presently it is dominated by the single-channel meander belts of the Euphrates and Tigris and their associated Holocene flood plain deposits and landforms. It corresponds with the upper part of the Lower Mesopotamian Plain, defined by BURINGH (1960, 38) “...as the

³ According to BUTZER (1982, 8), microscale and macroscale studies obviously are complementary, and both are necessary for comprehensive interpretation.

⁴ The Holocene comprises roughly the last 11500 Cal yr BP (ROBERTS 1998, 22).

⁵ For foundations and general procedures in geoarchaeology, see e.g. BUTZER 1982; RAPP and HILL 1998.
Geomorphological Research in the Mesopotamian Flood Plain

southern part of an extensive geosyncline, which at the bottom (approximately 3 kilometers under the present surface) is filled up with older shelf sediments, on top of which erosional products have been deposited."

In the northeastern part the Lower Mesopotamian Plain is delimited by the Pleistocene/Holocene fan piedmont, on pedisediments of the Zagros Mountains, which is intersected by intermittent streams and internally drained basins or swamps. The southwestern limit corresponds with the Tertiary sediments of the Western Plateau and relict fans or fanglomerates associated with palaeo-drainage systems coming from the Arabian Peninsula during Pleistocene humid phases. This desert area is characterized by many ephemeral streams, generally oriented perpendicularly to the flow of the Euphrates. In the northwest the gravelly, gypsiferous crusted deposits of the Lower Gāzīrāh terraces of Pleistocene age form a clear boundary. Finally, the Gulf and estuarine sabkha delimit the southeastern part (JASSIM et al. 1986). Figure 1 depicts schematically the main physiographic units and bordering units of the Lower Mesopotamian Plain. A brief description will be given below.

The Lower Mesopotamian Plain is dominated by Holocene landforms deposited or modified by fluvial, eolian, lacustrine, peritidal, and anthropogenic processes.

6 Most of the definitions of landforms that are used here conform with the recommendations made by the SOIL SURVEY STAFF, Natural Resources Conservation Service, National Soil Survey Handbook, title 430-V1 (Washington D.C., U.S. Government Printing Office, December 1997). Especially part 629, Glossary of Landform and Geologic Terms, provides preferred or appropriate definitions for terms that have several definitions in general use. Consultable at http://www.statlab.iastate.edu/soils/nssh/ (last revision 11/17/98).

7 The Western Plateau combines the physiographic units of the Northern and Southern Desert as defined by BURINGH (1960, 34, Fig. 13).

8 Here relict landforms are used as a synonym for inherited landforms: landforms that are found out of equilibrium with present geomorphic processes. Relict landforms have been interpreted as being inherited from a past climatic regime, and as such they are the most diagnostic evidence of past climates (FAIRBRIDGE 1970, 99).

9 The present ephemeral stream, the Wāḍī Bāţin, is associated with such a palaeo-drainage system. This system formed, during the humid phases of the Pliocene-Pleistocene transition and the semi-humid phases of the Pleistocene, a huge alluvial fan (approximate radius 150 km) south of Bašāra. This fan changed the direction of the Euphrates eastwards (SANLAVILLE 1989, 10). Southwest of Karbalā' a similar fan, minor in extent, can be identified. Compare this with the palaeo-drainage system of the Arabian Peninsula (SANLAVILLE 1992, 6, Fig. 2). Together with the progressive inland delta formation of the Karūn river, east from the Šaṭ al-'Arab, the fan of the Wāḍī Bāţin forms a kind of bottle-neck for the Tigris and Euphrates on their way to the Gulf. It is thought that this narrowing impedes water flow on the Mesopotamian Plain and that this is one of the factors responsible for the upstream development of extensive palustrine environments (BALTZER and PURSER 1990, 188).

10 Reliable, first source data are inaccessible, and even good topographical maps are available only spottily. Because of the lack of precise and accurate data the descriptions given here are unfortunately only qualitative.

11 Other processes, like local subsidence, compaction, neo-tectonics, liquefaction, mass movements, etc., must have been, and still are, important. However, in essence and presently, the Lower Mesopotamian Plain is a plain of accretion (aggradation). Nearly all suspended sediment carried by the Euphrates and Tigris is deposited in the Lower Mesopotamian Plain (BURINGH 1960, 52). During the extreme flood year of 1953, the total sediment carried by the Tigris in that one year was estimated at 111.304.000 m³ (BURINGH 1960, 161).
By far the most important landforms of this plain are fluvial in origin and if we apply the definition of flood plain strictly to that part of the nearly level plain that borders a stream and is subject to inundation under natural flood-stage conditions, most of the Lower Mesopotamian Plain can be classified as flood plains. Despite the fact that these natural conditions ceased in 1956 when the first modern flood control projects on the Euphrates and Tigris were finished (BURINGH 1960, 121), and despite the fact that anthropogenic factors since historical times — although difficult to assess — strongly interfered with these natural conditions, the Lower Mesopotamian Plain still clearly displays landforms that can be attributed to natural flood plain processes (Figure 2). In turn, these flood plain processes must have determined — again difficult to assess — the possibilities and limits of the Hydraulic Civilizations of the Mesopotamian Plain.

At a macro-scale we can subdivide the Lower Mesopotamian Plain into three macro-units. These units are approximately delimited in Figure 1. They are arbitrarily called the relict flood plain, the present flood plain of the Euphrates and Tigris, and the fluviolacustrine-deltaic complex of the Euphrates-Tigris-Karun.

2.1. The Relict (Pleistocene) Flood Plain, Terraces, and the Lower Ġazīrah

On a mega-tectonic scale, the Mesopotamian and Gulf geosyncline reflects the collision of the Arabian and Euro-Asian plates which began in Pliocene times. A broad, asymmetrical, structural depression was formed, which extended from Hormuz to Syria (BALTZER and PURSER 1990, 176). This became an extensive sedimentary basin, strongly

51). This represents enough sediment to cover present-day Baghdad (approximately 444 km²) with a sediment blanket of 25 cm. In flood, the Tigris sediment load may reach five times that of the Nile and more than three times the highest level known for the Euphrates (ADAMS 1981, 7). LEES and FALCON (1952, 29) used for their calculations a mean annual sediment load, for both the Tigris and Euphrates together, of 21,500,000 m³. AGRAWAL and EVANS (1994, 737) give for the annual suspended sediment content of both the Tigris and the Euphrates a value of 50-100 x 10⁶ tonnes; with a particle density of 2.6 g/cm³ this represents 19-38 x 10⁶ m³. See also SANLAVILLE 1989, 12.

12 Below high flood level.

13 During the Early Dynastic period work on the watercourses became a main concern of the organized state (ROWTON 1969, 310).

14 See for example ARRIAN, Anabasis Alexandri, VII, 21, 3-7 on deliberate channel bank opening during flood (breaching of the Euphrates into a canal and finally into the marshes) and high labor efforts for channel bank restoration (blocking) of the Euphrates (to bring again, after the flood, the Euphrates into the natural channel bed). For still earlier evidence of anthropogenic interference, see Cole and Gasche, this volume, pp. 7-13. Perhaps the most recent extensive inundations deliberately accomplished by river bank cutting were the strategic inundations caused by Iraqis in the Habbaniya region and 'Aqar Quf depression during WWII in May 1941 in order to prevent the British advance on Baghdad (GLUBB 1959, 243). No such strategic inundations are already attested in the Ur III period (ROWTON 1969, 309). For the Islamic period see ADAMS 1965, 86.

15 Inasmuch as these are still active processes, we cannot estimate.

16 Here arbitrarily set as follows: macro > 100 km; meso 100-1 km; micro < 1 km.

17 These units are roughly delimited and apply only to the major landforms. Of course, relict landforms also occur in the present flood plain.
Geomorphological Research in the Mesopotamian Flood Plain

affected by clastic siliceous and calcareous sedimentation from surrounding areas. In the northern part of the Plain (macro-unit I on Figure 1), this sedimentation is mainly associated with the relict fluvial systems of Pleistocene age.

Fig. 1. Schematic Representation of the Major Physiographic Units in the Lower Mesopotamian Plain. Macro-unit: I= Relict (Pleistocene) Flood Plain; II= Present Flood Plain of the Euphrates and the Tigris; III= Fluviolacustrine-Deltaic Complex of the Euphrates-Tigris-Karun. For general 'archaeological' orientation some important sites were added, regardless of their period of occupation. Compiled and generalized from various sources, among them SPOT multi-temporal, panchromatic images (1990-1991); BURINGH 1960 Map 1 and JASSIM et al. 1986.
The Lower Ġazīrah, which corresponds with the gypsum desert land soil unit, is mainly developed on gypsum, which is often exposed at the surface in a polygonal pattern (BURINGH 1960, 198). Central in this unit is the Taťar depression. Before it was used as a storage basin for Tigris water, diverted near the barrage at Sāmarrā' since 1956, the present Taťar lake was a large playa (BURINGH 1960, 198). The origin of this depression was attributed to down-faulting or to wind erosion. The gypsum is attributed to the Lower Fars Formation as deposits in inland seas during the Miocene (BURINGH 1960, 40).

However, the main landforms and landscapes in this macro-unit must have been formed or modified during Pleistocene phases of erosion and deposition. These include the formation of various terraces, strongly gullied areas, secondary gypsum crusts, major alluvial fans along the Jebel Hamrīn, and most importantly, the deposition of gravelly and sandy flood plains (relict flood plain sediments, usually associated with high-energy braided river systems). At present these relict flood plain sediments form depositional terraces.

BURINGH (1960, 123) described three terrace levels along the Tigris: the high, middle, and lower terrace. What follows is a brief description of his survey. The geographical extensions of these landforms are schematized in Figure 11.

The highest terrace lies approximately 15-20 meters above the present Tigris. Apart from the top few meters, the texture of the deposits consists of sub-rounded pebbles and gravels in a finer matrix, deposited in a braided river system environment (BURINGH 1960, 123). The high terrace southwest of Sāmarrā' and west of the Tigris has all the same characteristics and is attributed to the course of an ancient (early Pleistocene) Tigris river. It is the oldest river course found in Iraq (BURINGH 1960, 129). The gypsiferous gravelly terraces near Fallūgah and Iskandāriyah also belong to the highest terrace, but probably of the Euphrates (BURINGH 1960, 129).

The deposits of the middle terrace are more uniform and much finer (gravelly clay) in texture (BURINGH 1960, 130-131). These materials have been deposited after an erosional phase of the high terrace.

18 BURINGH 1960, Map I (Exploratory Soil Map).
19 BURINGH 1960, 198 citing WILLIAMS 1945 and MITCHELL 1948. Note however that the boundary stable/unstable shelf runs in the middle of the depression (Figure 1). MITCHELL (1957, 570) gives some evidence for a series of recent east-west upwarps (or fault movements) that caused the blockage of the former southward drainage of the Taťar into the modern Euphrates near Ramādī.
20 The geographical extent of this unit corresponds with the physiographic unit of the Older Fluviatile Terraces (River Terraces) of BURINGH (1960 122, Fig. 47). Other terraces of the Euphrates were mapped between the Euphrates and the Taťar Lake, east of Hit (JASSIM et al. 1986). Near the Abu Dibbs depression, BURINGH (1960, 133) also mentions a lower terrace of the Euphrates, but without further details.
21 BURINGH 1960, 123-143 and 242-248. We are not aware of other (accessible) geomorphological research in this area.
22 Initially BURINGH (1960, Map I) defined more units for the older fluviatile terraces (BURINGH 1960, 124, Fig. 49). The three units of the gravelly high terrace, the gravelly clay middle terrace, and the silty clay low terrace are the ones that appear on his soil map of Iraq.
Geomorphological Research in the Mesopotamian Flood Plain

The lower terrace — finer in texture (silt or fine sand) than the former — in the area along the Tigris and Adheim Rivers is approximately 10-15 meters above their present beds (BURINGH 1960, 133). Large areas on both sides of the latter are covered with thick silty irrigation deposits resulting from former irrigation practices and show the characteristic micro-topography of silty loam irrigation levees and silty clay irrigation depressions and gilgai relief (BURINGH 1960, 134-136).

On the exploratory soil map of BURINGH (1960, Map 1) these three terraces form three separate units, based mainly on their texture. They include the gypsiferous gravel soil (high terrace), the gravelly older river plain soils (middle terrace), and the older river plain soils, silted phase (lower terrace, reflecting the irrigation sediments).

BURINGH (1960, 247) places the deposition and formation of the terraces within the Pleistocene climatic-changes concept of the 1960s, when there was more evidence that glacial periods at higher latitudes corresponded with pluvial periods in low latitude areas.

WILKINSON (1990) describes the Holocene changes in the course of the Tigris south of Sāmarrā'. He outlined the channel pattern of an earlier Tigris course flowing south-southeast from Sāmarrā' as a broad meander belt (here interpreted as a meandering river flood plain) with more braided traces in the north and well-developed meanders in the south and east. Although they cannot be dated with confidence, these traces of stream channels are the oldest in this area and are approximately associated with an early Holocene river system (8,000 BC - 3/4,000 BC) (WILKINSON 1990, 126, and Fig. 3).

These traces cover almost entirely the area of the middle terrace unit south of Sāmarrā' as delimited by Buringh. He also describes this middle terrace south and southeast of Sāmarrā' as an eroded surface of the high terrace, where afterwards rather uniform material has been deposited during periods of high floods, forming the middle terrace (BURINGH 1960, 131). If this uniform material corresponds with the relict flood plain deposits of the early Holocene Tigris course, then this middle terrace is much younger, and its formation cannot be correlated with Pleistocene climatic changes. If so, this middle terrace should be defined as a relict flood plain and the changes of the Tigris during the early Holocene as normal avulsion processes. As a consequence, the history of the landforms in this relict flood plain zone would be more recent than is usually accepted.

The lower terrace covers approximately the area north of the line Sāmarrā'-Ba‘qūbah. The Adheim River and its eastern abandoned channel run in the middle of it. At present the Adheim River is strongly incised in this material, favoring strong gully erosion (BURINGH 1960, 140) gives an Abbasid, probably Sasanian dating. Major canal off-takes from the left bank of the Tigris north and south of Sāmarrā' date from Sasanian times and later. Some of them were used during the Sasanian and Early Islamic periods as supply canals for the Nahrawān, which supplied the Diyala Plains, northeast of present Baghdad, with irrigation water (WILKINSON 1990, 122).

BURINGH (1975, 394) correlates this lower terrace with late Pleistocene terraces in Syria and he attributes other late Pleistocene terraces on the Gazirah Plain to greater discharges.
1960, 134). Taking into account the extent of the catchment area, the discharge of the Adheim is remarkably low (TAVO 1988). Its topographical position on the southern flanks of the Jebel Hamrin, however, is favorable for the formation of alluvial fans. JASSIM et al. (1986) identify this area of the lower terrace partly as Pleistocene-Holocene alluvial fans (west of the Adheim) and partly (east of the river) as Holocene flood plain deposits. Their interpretation seems acceptable if, in former (early-middle Holocene) times, the discharge of the Adheim was greater than at present.26

This area, which is also covered by thick irrigation sediments, is comparable from a geomorphological point of view with the Diyala Plains, which we will describe briefly hereafter.

The importance of the study of river terraces has long been recognized as one key for the better understanding of river behavior and the evolution of the whole fluvial system. Terrace formation due to the incision of a river can be attributed to different, not self-exclusive causes: lowering of the base-level, positive tectonic movements, changes in river discharge and changes in the amount and characteristics of the river sediment load. If we can assign a more recent date (Pleistocene-Holocene transition/early Holocene) to these landforms, only the lowering of the base-level is excluded.27

Present landforms in the area between the Adheim River and the Tigris include the bolson and playa of the Shārī saline lake and typical associated eolian deposits. Near the Jebel Hamrin, a minor fan piedmont (bajada) is present.

West of the present Euphrates, the Western Plateau and the depressions of Abū Dibbis and Ḥabbāniyah will be briefly discussed later.

The historical geography of the plains adjoining the Lower Diyala River, south of the Jebel Hamrin, (the Diyala Plains) is outlined in the classical work of Adams “Land behind Baghdad” (ADAMS 1965). He described the Diyala Plains briefly as an irregular, fan-shaped alluvium that falls very gently towards the south and was laid down for the most part by waters of the Diyala on their way to join the Tigris River (ADAMS 1965, 3). Its deposits blend to the south and west with those of the Tigris, and to the east it borders on semi-closed

25 Discharge data from TAVO 1988 are from the period 1933-1952, and annual flood discharge is lower than 100 m³/sec.
26 BURINGH (1960, 140) identifies buried (virgin) soils 10 meters below the present surface along the Adheim River and ancient river beds. He attributes the 'clay balls' which can be found at the bottom of former river beds to stream conditions different from those that prevail today (BURINGH 1960, 140).
27 Remarkably little geomorphological research has been carried out in comparison with the 'archaeological richness' of the Mesopotamian Plain. Published 'geo-science' reports and surveys cover either a local area or a specific topic or are too general; others are hardly accessible or are unknown to the author. Conclusions in this contribution were based on the available documents listed in the bibliography, and it should be kept in mind that geoarchaeological research in the Mesopotamian Plain is still in its infancy. For an excellent general overview of the material foundations of the Mesopotamian flood plain, see chapter I in POTTS 1997.
28 Here understood as an internally drained (closed) intermontane basin floor which can be of tectonic origin. It includes the central saline lake (playa), the alluvial flats, dunes, and the higher piedmont slopes (FRIEDMAN et al. 1992, 516-526).
seasonal swamps and marshes of the fan piedmont zone of the Zagros. The approximate surface of this unit is 7,000 km2.

The present pattern of the hydrographic (including canals) network of the Diyala Plains south of the Jebel Hamrin can be described as a radial, dendritic, distributive one, characterized by a topography of alternating levees (irrigation or natural) and basins. Its landscape clearly reflects the millennia-old irrigation cultivation practiced here. The distribution of the old settlements in the Diyala Plains are organized linearly along old watercourses29 throughout the whole plain. The “big picture” of this geomorphic unit can perhaps be schematically described as an alluvial fan overlaid with an irrigation/alluvium fan apron.30

The present pattern of the Lower Diyala River is a composite. From the Jebel Hamrin to its confluence with the Tigris, the total channel length is 171 kilometers, dropping approximately 40 meters (ADAMS 1965, 7). The upper fifty kilometers show a more braided pattern, while the last forty kilometers show a meandering pattern where, under natural conditions, limited overbanking can occur at flood stage.31 In between, the Diyala is an antecedent, single meandering channel so deeply entrenched32 that no overbanking occurs even at high flood stage (ADAMS 1965, 7). No significant natural levee formation is associated with the present Diyala River.

From the above it is clear that the present Diyala River33 is not in harmony with its associated landforms or settlement patterns of the plains. This might suggest a distinct fluvial system with higher discharge during the first occupation periods and a gradual decrease in its water supply.34

29 There is no ancient or modern terminological distinction in Iraq between canals and natural streams (ADAMS, 1965, 8). Nor was there a distinction made in ancient cuneiform sources (S. Cole, personal communication).
30 Within the Diyala Plains this irrigation fan apron can be confirmed from archaeological soundings at Tell Asmar (244) and Tell Khafajah (421) and from a boring at Khashim Wâwi (628) (ADAMS, 1965, 9). The thickness of this apron is on the order of less than 10 meters. Tell Asmar has virgin soil underlying remains of the late fourth millennium BC at a depth of more than 10 m below the present level of the plain adjoining the site (ADAMS, 1965, 9). Tell Khafajah’s oldest remains are at 8 m below plain level. Khashim Wâwi, not far from the Nahrawân canal (late third millennium BC), at 7 m below plain level (ADAMS, 1965, 9). These are maximum thickness levels since the sites lay alongside watercourses in use fairly continuously (ADAMS, 1965, 9). The locations of these sites are indicated on Figure 10. For the idea of true fan formation overlaid by alluvial levee formation see ADAMS 1965, 12, and 168, n. 42. SANLAVILLE (1989, 8) also describes this area as an alluvial cone, whose extension has caused the Tigris to shift towards the Euphrates.
31 In contrast with the Euphrates, the Tigris, and the other Tigris tributaries, the discharge of the Diyala is largely a consequence of winter rainfall and not of meltwaters during the late spring (ADAMS 1965, 6). The mean annual discharge is only 161 m3/sec, with a mean annual flood discharge of 850 m3/sec (ADAMS 1965, 6). TAVO gives even lower data (TAVO 1988). In many years, due to upstream irrigation off-takes, the Diyala at the confluence with the Tigris had no flow at all during the late summer (ADAMS 1965, 6).
32 This entrenching is, according to ADAMS (1965, 6), due to the gradual rise of the Jebel Hamrin.
33 The annual sediment load of the Diyala is almost 12,000 m3 (RZÓSKA 1980, 45).
34 The Katul-Tâmarrâ-Nahrawân irrigation canal reflects the need for an additional supply of (Tigris) irrigation water for the Diyala Plains (ADAMS 1965, 76-79). It was planned (and partly accomplished ?) during the late
2.2. Present Flood Plain of the Euphrates and Tigris

This macro-unit (macro-unit II on Figure 1) is roughly defined as that part of the Lower Mesopotamian Plain where natural flooding of the Tigris and Euphrates can occur or did occur in recent times. It may be subdivided into the meandering river flood plain of the Euphrates, the Tigris, and the Šaṭṭ al-Ḡarrāf, the anastomosing flood plain of the Euphrates, and the abandoned flood plains of the central plain and the Šaṭṭ al-Duḡailah. It represents nearly 54,000 km². The study area is entirely situated in the meandering river flood plain. Before describing the subdivisions, it is perhaps useful to review some flood plain landforms and characteristics and flood plain morphologies.

2.2.1. Flood Plain Landforms and Characteristics

Flood plain landforms in general exhibit a variety of constructional and erosional features produced by river channel behavior and flooding. In fact, heterogeneity is a characteristic of the flood plain environment (Anderson et al. 1996, 4). The most pertinent flood plain landforms are flood basins (backswamps), braided, anastomosing, and meandering river channel patterns, and eventually channel-bars, natural levees, flood-plain splays, flood gullies, meander belts, channel cut-offs, and channel fills. Inactive or abandoned flood plain units can occur within the active flood plain zone and consist of former flood plains abandoned by the active river channel in the recent past due to processes of river channel migration or avulsion. Only under conditions of extreme discharge are these abandoned flood plains eventually partly flooded. In the Lower Mesopotamian Plain, these abandoned flood plains usually display recent landforms of eolian origin (especially along abandoned stream channels or meander belts) and areas liable to extreme salinization.

Flood plains are continuously constructed and eroded by fluvial processes (Morisawa 1985, 118).

Sasanian period. The Nahrawān was certainly functional during the early Islamic period (Adams 1981, 211). It gradually silted up and was abandoned during the 11th and 12th centuries AD (Le Strange 1905, 59).

It corresponds approximately with the physiographic units of the flood plains and delta plains of the Tigris and Euphrates as delimited by Burgh (1960, 122). Here the delta plain unit must be understood in its strict sense as a flood plain characterized by repeated channel bifurcation and divergence, multiple distributary channels, and interdistributary flood basins (Soil Survey Staff 1997). Note that the soil map of Burgh shows marshy conditions in the now desertic, salt-covered, abandoned flood plain of the Šaṭṭ al-Duḡailah (Burgh 1960, Map 1).

See below for more details.

At present a canal but it has all the characteristics of a natural levee and was certainly the major river bed of the Tigris during Islamic times. See e.g. Le Strange 1900, Map I.

This abandonment can be due to a natural process such as avulsion of meander belts or can be anthropogenic.

This unit corresponds roughly with the survey area of the Central Flood Plain in “Heartland of Cities” (Adams 1981).
Geomorphological Research in the Mesopotamian Flood Plain

Fig. 2. Flood Plain Processes and Landforms in the Meandering River Flood Plain Zone of the Tigris, Downstream from Kut. Channel bars have been deposited just downstream from the barrage (completed in 1939 after Willcock's [1917] irrigation proposals) at Kut due to a decrease in stream power, since a considerable part of the discharge is diverted into the Satt al-Garraf and the present Dugailah canal. The Satt al-Garraf has a prominent natural levee, and presently its water level is maintained by the barrage downstream. Note the extent and scale of the flood-plain splays on the Tigris downstream from the abandoned former Satt al-Dugailah (on which the medieval city Wasit stood). This reach of the Tigris is relatively recent, and the natural levee is still relatively weakly developed so flood-plain splays frequently occurred. Based on SPOT 1991. See also Burinck 1960, 181, Fig. 92, and 184, Fig. 94.

Flood plain constructional landforms consist of deposits which can be classified in two distinct groups with respect to the position of the active river channel: channel (substratum) deposits and overbank (topstratum) deposits (Allen 1965, 128). A third group consists of transitional deposits or channel-fill deposits.

In general channel deposits result from the lateral accretion of river sediment load during the sideways migration of channels. These deposits form the meander belt and/or different river channel patterns.

40 Near the flood plain boundaries poorly sorted colluvium material may be interlayered with flood plain deposits (Morisawa 1985, 118).

41 These deposits are also called 'within-channel' deposits. It should be stressed that these deposits can show an important vertical accretion as well (Brown 1997, 19). This is certainly the case in some parts of the Mesopotamian flood plain.
Overbank deposits result from *vertical accretion* of suspended load\(^{42}\) after overbank flow. These deposits lead to the construction of landforms such as natural levees, floodplain splay, and backswamps or flood basins (Allen 1965, 125).

Channel-fills are deposited within abandoned or cut-off channels (Allen 1965, 128). The process of abandonment can occur gradually,\(^{43}\) and aggradation of the channel bed is a net accumulation from alternate scouring during flood stages and deposition during falling stages. Therefore, channel-fills of abandoned channels do not always consist of the coarsest material. The cut-off of channel beds or avulsion process occurs rather quickly; oxbow-lakes may form, and the coarser channel deposits are overlaid by finer organic material. Channel-fill deposits comprise in quantity only a small part of the flood plain, but they are of great archaeological interest in the Lower Mesopotamian Plain.

Lateral accretion deposits are common to all flood plains, some of which show limited vertical accretion features (Allen 1965, 125). Whether significant vertical accretion occurs depends mainly on characteristics of the sediment load and river regime and also on external factors such as changes in river base level and land level due to subsidence (tectonics, compaction) or uplift (tectonics, isostatic) (Allen 1965, 125).

Channel deposits usually consist of lag deposits, longitudinal and transverse bars,\(^ {44}\) and point bars. The major type of channel deposits in flood plains of meandering rivers is the point bar\(^ {45}\) (Morisawa 1985, 119). These deposits will be discussed in more detail below at another scale level.

Channel lag deposits consist of the less mobile and coarsest-grained deposits, and are deposited on the channel beds of scour pools or along the sides of the channel. Their deposition can be associated with the falling discharge from a more competent flood peak (Morisawa 1985, 118). The texture ranges from gravelly to very coarse sand. They form discontinuous lenticular patches and occupy the lower parts of the channel or point bar

\(^{42}\) Different types of river sediment load are defined in the literature based on the mode of transportation but not always in a consistent way. The river sediment load in solution is called the dissolved load; suspended load is transported in suspension whereas bed load is bed material which moves rolling, sliding, or saltating. Suspended load is most important for flood plain accretion. Suspended load can further be subdivided into wash load and suspended bed load. The former represents the fraction of the suspended load that is almost in permanent suspension, whereas the latter represents the coarser fraction of the suspended load that is only suspended above certain flow velocities (Brown 1997, 323).

\(^{43}\) During floods the water may flow over the point bar and form a little channel, or chute. This may be widened by further erosion to become the main channel. This process is called chute cut-off. The sinuosity may also become so high that erosion cuts a channel through a narrow neck (neck cut-off), making a straight course to a meander of the river. This whole meander will then become an inactive channel, which will gradually fill with sediments (abandoned channel fill) (Bjorlykke, 1989, 72).

\(^{44}\) Many other types of within-channel bars are differentiated (see e.g. Brown 1997, 20-21). Point bars and longitudinal bars are the dominant types in the present Mesopotamian flood plain rivers.

\(^{45}\) In the strict sense point bars are limited to the active channel bed deposits on the inner or convex side of a river meander. When such a meander migrates laterally, former point bars may become inactive channel deposits and are usually wave-like in cross-section (ridge and swale topography) and curved in planform. Such inactive deposits, associated with the laterally migrating channel, are also called scroll-bars. Here, however, we will apply the term point bar in a broader sense.
sequence. They indicate the base of the channel, and in ancient records they could indicate the base of the former channel.

Longitudinal bars are diamond-shaped and elongated with the alignment of their long axis parallel to the stream flow (MORISAWA 1985, 118). Their texture grades downstream into finer particles. The upstream ends and sides of these bars are steep. They usually occur in groups, are very mobile, and their configurations change with fluctuations in discharge (MORISAWA 1985, 119). Transverse bars are tabular in shape and lie across the path of the stream flow. They are thought to build up at low flow in what had formerly been a depression in the river bed (MORISAWA 1985, 119).

Overbank flooding, mainly responsible for the vertical accretion of the flood plains, causes deposition of a wedge of sediments thinning away from the channel edge and with a decrease in particle size towards the flood basin. It is generally agreed that lateral accretion is dominant over vertical accretion in flood plain construction (MORISAWA 1985, 121). Since sediment-load discharge peaks before water discharge, overbank flooding generally carries relatively less sediment. This also may favor the vertical accretion of natural levees and channel bed in respect to the flood basins. The flooding of a river can occur through two completely different processes. The first occurs by way of a sheet-type overflow (overbanking/overtopping of the river over long distances along the levee), and the second by way of distinct ‘breakthrough channels’ cutting across the levees (flood-plain splays).

These splays develop their own channel pattern and system. Flood-plain splays (crevasses) have coarser deposits, spread out in a fan-shaped lobe on the flood plain where excess water leaves the river channel through restricted low sections or breaks in the natural levees (Figure 2). Flood-plain splays can extend several kilometers across the levees into the flood basins. Occasionally, crevasse channels may divert the main river discharge, causing a change in the river course. The sudden abandonment of part or all of a channel course is called avulsion. As a result, levee deposits are made up of numerous interfingering and overlapping lenses of sandy to loamy material.

The formation of natural levees will be covered below in more detail.

Flood plain erosional landforms are mainly the result of short-term river channel migration and river behavior. In flood, the river may break through its levee and form a crevasse (see above). Eventually, when levees are steeper, sheet erosion on the flood plain during a flood may take place (MORISAWA 1985, 121). Other erosional landforms can consist of flood gullies, bank and flood plain boundary erosional landforms, or relict landforms now being eroded within the active flood plain zone. Geomorphic responses of the fluvial system to medium/long-term changes of external factors (changing climates, devegetation and sediment supply changes, base level changes, neotectonics, etc.) may

46 Usually the flood path passes over the convex side of the river meander, and a flood channel or chute can develop (See e.g. SELLIN and WILLETTS 1996, 282, Fig. 8.25). After several floods, this chute can become the main channel and a chute cut-off is formed.

47 REINECK and SINGH 1973, 246.

48 The term in question refers to a variety of processes of human impact on the landscape (BUTZER 1982, 124).
result in increased stream power and eventually the removal or modification of former flood plain constructional landforms.

Flood plain landforms and deposits are now relatively well described from a sedimentological viewpoint. However, research towards a better understanding of flood plain processes and meandering river evolution are, relatively speaking, in their infancy (ANDERSON et al. 1996, 9).

Most research on flood plain landforms focuses on river channel patterns. In nature there exists a wide spectrum of river channel patterns, and they are a reflection of short-term channel adjustment to channel gradient and channel cross-section or of medium-term changes in water and sediment discharge. Indeed, channel patterns are strongly controlled by the amount of sediment load and its characteristics, and by the amount and nature of discharge (REINECK and SINGH, 1973, 225).

Various types of river channel patterns have been described and/or defined at different scales of measurements. Different classifications have been proposed, based on different natural river controls (e.g. hydrological or sedimentary processes, relationship to bed and bank characteristics) or descriptive parameters (e.g. degree and character of sinuosity, braiding or anabranching, morphology of network or channel, stability of channels) and serving different purposes or goals. All this reflects the wide range of variation and intergradations among the spectrum of natural channel patterns. Indeed, it should be stressed that stream channel patterns are thought to form a morphological continuum (ALABYAN et al. 1998, 467). However, main river channel patterns are commonly classified into meandering, braided, straight, and anastomosing on the basis of stream morphology (BOGGS 1995, 306). These channel patterns may reflect stability over at least short time scales (10^1 - 10^2 years). There has been a wealth of studies of the influence upon channel patterns of river and valley slope, flow regime, sediment load (amount and size range), erosional and depositional history (e.g. tectonic deformation, long-term aggradation or entrenchment, environmental changes), and local physiography. Still there are no universal criteria for predicting planform type or even universal agreement on leading causative factors (HOWARD 1996, 16).

Since there is a morphological continuum of river channel patterns, these patterns may change over a certain period of time. The general process of changes of river morphology is

49 See the classical review of ALLEN 1965; for more recent views, see e.g. FRIEDMAN et al. 1992.

50 In the complex space-time processes of flood plain environment, there are great sedimentological and hydraulic variabilities. Both can be structured or apparently random. Frequently only weak relationships exist between the hydraulics (flow rates, turbulence, etc.), chemical (viscosity, etc.), sedimentological (sediment load amount and characteristics, sediment supply, transport rates, etc.) and geomorphological (bank environments, river bed form, vegetation, relict landforms, time, erosion, etc.) controls of flood plain evolution. By far, sedimentological heterogeneity is better understood than hydraulic and chemical heterogeneity (ANDERSON et al. 1996, 5).

51 River channel patterns deal with the configuration of river segments in planform.
known as river metamorphosis and was first introduced by SCHUMM (1972, 395-421, and 1977, 159-171). Typical examples of river metamorphosis are the transition from braided river channel patterns to meandering ones during Late Pleistocene times (NUTZEL 1979, 228). It is our working hypothesis that such a river metamorphosis took place in our study area after the early-middle Holocene, mainly due to changes in discharge, sediment-load supply, and/or river bank vegetation.

2.2.2. Flood Plain Morphology

Flood plains are commonly classified by the associated river channel pattern (LEWIN 1978, 420, Fig. 4). NANSON and CROKE (1992) classified flood plains by a combination of sedimentological characteristics, formation processes, and stream power per unit channel width. Of the fifteen flood plain types they recognized, two are of particular interest for us: the medium energy flood plains with non-cohesive sediments and meandering channels, and the low energy cohesive sediment flood plains of anastomosing channels.

Meandering river flood plains are formed by lateral channel migration and flooding. The flood plain sediments are dominated by coarse textured point bars and channel bars and finer textured overbank flood deposits. The river channel planform forms a meander belt. If there is vertical aggradation, a natural levee may be formed. Levees are embankments alongside the river channel. They rise above the level of the adjacent flood plain level, but are wider in relation to their height. They encourage lake and swamp formation in the flood basins, since not all water is able to return to the main channel when floods subside. Levees are formed through successive flooding and deposition of sediments. Deposition is greatest nearest the river, because, as the water floods out of the main channel, its speed is immediately checked by friction with the banks, with the heavier sediments being deposited first. Along rivers where the levees have been raised by man to prevent floods there is a tendency to deposit along their beds. The eventual effect of this may cause the rivers to flow between their levees at a level that is higher than their flood plains.

If the input controls of a fluvial system and the channel bed position remain constant both in planform and vertical dimension, we might expect that the formation of these natural levees and the flood basin accretion would tend, in the short-term, towards a self-limiting system, as there would be a progressive decrease in overbank deposition as the levees are aggraded vertically. Characteristic for large rivers in semi-arid climates, the vertical

52 River metamorphosis in general refers to the change of river channel morphology that can occur when changes of discharge and sediment supply exceed a threshold condition. These changes in river channel morphology can be expressed in single or combined adjustments of river channel cross-section, river channel pattern, or even the whole drainage network.

53 In general flow velocities during floods increase due to a combined effect of an increasing hydraulic radius (ratio of channel cross-section to wetted perimeter) and a decreasing roughness factor (Manning’s n factor) at bankfull stages (EASTERBROOK 1993, 98 ; PETTS and FOSTER 1985, 100). Manning’s n factor increases rapidly when the flow spreads onto the flood plain.

54 WOLMAN and LEOPOLD 1957 (cited in BROWN 1997, 23). As one might expect, the limits of natural levee accretion will be related to the level of the mean annual bankfull stage. See also ADAMS 1965, 8.
dimensions of the channel bed in short-term periods remain constant, since during high flow the channel bed tends to scour and fill again at low flow (LEOPOLD et al. 1992, 229). Only when there is a net vertical channel bed aggradation will continuous levee formation occur over longer time periods. Such aggradation can be initiated either by changes in sediment load-discharge relationships, calling for an increase in river gradient, or by the raising of the base level (EASTERBROOK 1993, 129). However, input controls vary continuously, and as river channels migrate, limited net flood plain accretion will occur when deposition takes place on former flood basin materials.

Anastomosing river flood plains have a very low gradient and are commonly straight to weakly meandering with separated multiple channels. Channel meandering is weak due to the low stream power and the cohesive banks. Low gradient flood plains are usually associated with an aggradational regime or flood plain sinking (HOWARD 1996, 49). The aggradational regime and relative channel stability favor natural levee formation. Anastomosing generally develops due to avulsion at breaches in the natural levee. Non-active zones of the flood plain are usually swampy or occupied by shallow lakes (HOWARD 1996, 49). In general, these anastomosing rivers are characteristic of areas with very low downriver slopes and are common in swamps and marshes, on delta tops, and where valley floors are adjusted to a local base level (COLLINSON, 1986, 41).

Figure 3 summarizes the present river patterns of the Mesopotamian flood plain in relation to their main characteristics. As is evident from this figure anastomosing river patterns are more stable and typical for low gradients (slopes). Meandering river patterns develop at steeper gradients and are less stable. Eventually, as river systems adjust their gradients, transitions from one pattern to another can occur.

55 LEOPOLD et al. (1992) used data from the Colorado River, a river, according the Adams, comparable with the Euphrates (ADAMS 1981, 1).
56 Channel scour and fill are used to define channel bed cutting and sedimentation during relatively short periods of time, whereas degradation or aggradation apply to processes that occur over longer time periods (LEOPOLD et al. 1992, 227).
57 BROWN (1997, 25, and reference therein) demonstrates that Holocene flood plain accretion can occur with no change in channel bed height when river channel patterns change from braided to single-channel meandering ones. According to this so-called stable-bed aggrading-banks model, the bankfull capacity of the channel cross-section is increased by the vertical aggradation of the riverbanks, when the discharges of multiple channels have to flow through one channel (BROWN 1997, 24). Deposition, however, seems to be triggered by a net decrease in discharge and an increase in fine sediment supply due to land-use changes, and the constant channel bed height can be the result of increased stream power of the single channel.
58 In general one might expect that changes in discharge occur over the medium time-scale, whereas changes in sediment load can occur in a shorter time span. The latter influences the aggradation (siltation) of the channels due to deforestation, for example.
59 Cohesive banks are bedrock or silt-clay banks; non-cohesive banks are sand or coarser (KNIGHTON 1984, 86). Also vegetation on the banks increases bank stability and resistance.
2.2.3. Flood Plain Evolution

Geomorphological research of flood plains is a rather young discipline. More attention has been directed to the relation of flood plain landforms to river channel processes and less to the evolution of flood plains themselves. The study of flood plain evolution is in part a historical science, and as such, it has much in common with geoarchaeology. An

On the formation of flood plains, see LEWIN 1978; NANSON and CROOKE 1992. For flood plain processes, see ANDERSON et al. 1996. For a geo-archaeological context, see the excellent work of BROWN 1997, and on flood plain palaeoenvironments, see BROWN 1996.
understanding of its evolution is essential for the interpretation of archaeological sites in alluvial contexts and for insights into human-environment relationships (BROWN 1997, 17).

In general lateral migration of channel belts and vertical accretion (overbanking) are the main processes of flood plain formation. However, their relative importance in flood plain evolution and rates may change over time and surely are flood plain specific. Whether flood plains evolve as suspended-sediment sinks or as superimposed natural levees, depends on many local and regional factors.

Butzer (1982, 134) describes several cut-and-fill cycles in flood plain evolution and attributes them to geomorphic responses to changes in soil erosion in the flood plain periphery. Such accelerated soil erosion causes an increase in sediment supply, resulting in the development of a higher flood plain along rivers or rapid channel filling, and the possible switch from a meandering pattern to an unstable braided system (Butzer 1982, 134). When the sediment supply is drastically reduced ... this normally favors new readjustments in hydrological processes and floodplain geometry, with stream entrenchment that leaves the floodplain as a nonfunctional 'terrace' several meters above a new and narrower floodplain... (Butzer 1982, 135).

River channel patterns, which are ultimately responsible for flood plain evolution, vary over time as well. A present meandering river may migrate laterally over relict flood plains deposited by a former anastomosing channel of the very same river. And, as we will discuss later, the causes for such changes need not always be climatically induced and can occur within short-term spans.

Flood plain geomorphology and the archaeology of the flood plain in Mesopotamia have their reciprocal importance, not at all fully exploited yet. Flood plain geomorphology can give us some insight into the processes of river channel aggradation (or natural levee formation) and flood plain accumulation (or flood plain topographical evolution), whereas archaeology can give us a high resolution time frame for these processes, which is often lacking in pure geomorphological research.

2.2.4. The Subdivisions of the Flood Plain of the Euphrates and Tigris

More description of the meandering river flood plain of the Euphrates and the Tigris (the study area) will be given below when discussing the study area at meso-scale.

The area between the present Šaṭṭ al-Ǧarrāf and the Tigris (approximately 7.000 km²), which represents an abandoned flood plain, is at present a large salt-covered desert plain with intense eolian activity. It has never been the subject of even an extensive geo-archaeological study and still awaits topographic surveying (Adams 1981, 15, 251). It is clear, however, from satellite interpretations, that this area at one time witnessed intensive irrigation practices and occupation along different bifurcating channels south of Wāsiṭ. It is

61 According to Butzer (1982, 129), such accelerated soil erosion can, within a few generations or even a few years, change landforms and move more soil than can millennia of environmental change.
known to have once been a major Islamic reclamation area (ADAMS 1981, 218). The extensive marshes (Haur as-Sa’diyah) that existed west of the present Tigris in this area and were fed supplementarily since the 1950s by the Musandag escape downstream from Küt, are dramatically shrinking.\(^62\)

The morphology of the abandoned \(^63\) flood plains of the central plain and the areas around Uruk \(^64\) and Ur are described in detail by Adams, Nissen, and Wright (ADAMS 1981, ADAMS and NISSEN 1972, WRIGHT in ADAMS and NISSEN 1972).

The topography of the central flood plain as a whole is a result of the combined effect of natural and anthropogenic processes. These processes ... account for an ordered sequence of westward riverine movement, for intercalated networks of levees and depressions, and for shifting zones of settlement and cultivation. Seen from a distance, or over progressively more inclusive intervals of time, the dominant impression is one of broad, systemic change (ADAMS 1981, 22).

Adams gives an overview of the major watercourse succession patterns for the central flood plains. Apart from other alternative views that he gives about these succession patterns, the general picture he proposes may be understood from the following sentences: ... it appears that a strikingly different general arrangement of watercourses existed at the time human settlements first became widespread in the early fourth millennium. The Tigris and Euphrates did not remain distinct, as they do today, but were joined near the head of the alluvium. At that point, however, they did not form a single united stream comparable to the Shatt al-Arab at the foot of the modern alluvium. Instead, they diverged once more into an uncertain but probably considerable number of channels that together may have constituted a shifting, bifurcating, and rejoining combination of an anastomosing pattern and an alluvial fan as they crossed the lower Mesopotamian plain toward a number of separate points of outflow into the Gulf. After the fourth millennium the Tigris passes largely out of our ken for an extended period. Diverted farther eastward by the buildup of Euphrates sediments, it may have shifted abruptly into its modern, single-channel form in approximately its present position. A course even farther to the northeast is also possible, followed by a reverse movement into its present position as sediments from the Diyala alluvial fan accumulated that would divert it southward once more (ADAMS 1981, 17-18).

This abandoned flood plain is now subject to intense eolian activity. Dunes and deflation basins are prominent in this area characterized by rapid changes.

The Šatt al-Ġarrāf is situated on a natural levee, as it was once a major branch of the Tigris river system.\(^65\) It gradually silted up, and since the 16\(^{th}\) century AD, the present Tigris

\(^{62}\) Compare DE VAUMAS 1964, Plate XXI, and RZÓSKA 1980, 46, Fig. 17 (Rzóska confuses the Ġarrāf canal here with the Musandag escape).

\(^{63}\) It is thought here that this abandonment (of the Euphrates) took place at the end of the 18\(^{th}\) century BC (ARMSTRONG and BRANDT 1994, 261).

\(^{64}\) For more recent geomorphological research in the Larsa-'Oueili region, see Geyer and SANLAVILLE 1996.
course has been the main river (BURINGH 1960, 182). At present it is possible to irrigate again from it, since its flow is maintained by the barrage at Kūt. On satellite images the importance of this natural levee can be estimated on the basis of salinization strips at the top convexivity of the levee on both sides of the Ṣaṭṭ al-Ḡarrāf.

Below Hillah the present pattern of the Euphrates changes into an anastomosing river. Figure 4 depicts a detail of the present situation east of al-Kūfā.

2.3. Fluviolacustrine-Deltaic Complex of the Euphrates-Tigris-Karūn

This macro-unit (macro-unit III on Figure 1) is a very complex, variable, and active geomorphic unit (SANLAVILLE 1989, 11). Different sedimentary subenvironments and processes interact and form — together with external short-term factors such as subsidence, postdepositional compaction, liquefaction and neotectonics — a variety of landforms, including reed and dried marshes, fresh and brackish water lakes, inland delta-lobes, broad natural levees of the Tigris, the Euphrates, and the Ṣaṭṭ al-‘Arab, the inland deltas of the Karūn and the Karkheh, and the wide marine deltaic system of the Ṣaṭṭ al-‘Arab.

This is mainly a zone of deposition of allochtonous suspended load (silty clays) of the former rivers, dust (silt) fall-out, and autochtonous biochemical and chemical sediments (AQRAWI and EVANS 1994, 757). The relative importance of the two major (i.e. fluviatile and eolian) sources is difficult to assess since the sediments are texturally, mineralogically,
and geochemically very similar (AQRAWI and EVANS 1994, 773). There is no textural difference between the suspended loads of the Tigris and the Euphrates, since both are within the silty-clay to silty-clay-loam classes (AQRAWI and EVANS 1994, 765).

AQRAWI and EVANS (1994, 758) investigated the recent sedimentation in the lake and marsh area (Ahwar sediments) based on subsurface (< 1m) core samples taken within the triangle of Basra, Nasriyah, and Qurna. For most of the studied profiles, they differentiated three distinct sedimentary units: an upper, very modern, organic-rich sandy silt unit, an intermediate shelly unit of fresh/brackish fauna, and a basal clay-rich laminated unit with a brackish/marine microfauna (AQRAWI and EVANS 1994, 772). The first two units are interpreted as modern lacustrine-marsh deposits, which do not exceed 50 cm in thickness and cover the basal unit. This latter sedimentary unit must have been formed when the central part of their study area was subjected to more marine conditions (brackish-marine near-shore or lagoonal environments), a condition that had persisted until about 3.000 BP (AQRAWI and EVANS 1994, 772). They concluded that since 3.000 years BP the present day freshwater environment of the area has persisted without any major changes (AQRAWI and EVANS 1994, 773).

In spite of the thick reed beds in the marshy zone, there is no evidence of modern organic preservation, as the organic matter is very efficiently decomposed (AQRAWI and EVANS 1994, 775). However, Aqrawi described organic-rich sediments within Holocene bore-hole sequences (AQRAWI 1997). He attributed the preservation of this organic-matter to high rates of sedimentation, particularly in the early-middle Holocene. This evidence of organic material (Phragmites sp. and Typha sp.) predates the main middle Holocene brackish/marine transgressive sediments (AQRAWI 1997, 69).

The Karun and the Karkheh Rivers form two coalescent alluvial fans upstream, which are still very active (SANLAVILLE 1989, 10). At present the Karkheh River ends in the marshes east of 'Amara. During the Middle Ages, however, the Karkheh was once a tributary of the Karun (SANLAVILLE 1989, 10). Presently the Karun is mainly responsible for the discharge and sediment supply of the Saat al-'Arab (SANLAVILLE 1989, 11).

<400 years BP (AQRAWI and EVANS 1994, 774).

Radiocarbon analysis of near-surface shells taken from within this area shows a date for the modern lacustrine-marsh complex that does not exceed 3.000 years and usually does not exceed 2.500 years BP (AQRAWI and EVANS 1994, 773).

6.000 to 9.000 BP depending on their location (AQRAWI 1997).

These middle Holocene brackish/marine sediments are attributed to the transgressive Hammar Formation (AQRAWI 1997).

Kirkby also describes a major (incised) alluvial fan of the Karun south of Ahvaz (KIRKBY 1977, 265, Fig. 101). According to BALTZER and PURSER (1990, 188, Fig. 9) a better morphological description for these sedimentary environments at present would be delta lobes and levees of the Karun and Karkheh. The Karun is an antecedent river on a large alluvial fan and smaller channels behave as deltaic distributaries leading to marshes both on the north and south sides of the alluvial fan (BALTZER and PURSER 1990, 179 and 188). This alluvial fan can probably be interpreted as a relict feature.

These sediments are mainly fine sands and silts. Of the total discharge of the Saat al-'Arab, estimated at 27x10⁶ m³/year, 25x10⁶ m³ is delivered by the Karun (SANLAVILLE 1989, 11). Water and sediment supply of the Tigris and Euphrates towards the Gulf is negligible.
Fig. 4. The Anastomosing River Flood Plain of the Euphrates, East of al-Kufa. Traditional irrigation practices are still used. Note the alternations of small irrigation and drainage canals towards the central depression of the Haur. Based on SPOT panchromatic 12/1990.
Geomorphological Research in the Mesopotamian Flood Plain

Another alluvial fan, smaller in extent but perhaps illustrative of the evolution of other alluvial fan landforms in the area, is the relict alluvial fan of the Fuka river, 50 km northeast of ’Amāra (Figure 1). This fan is no longer built up by active aggradation but shows instead active erosion and incision of shallow, radially distributed gullies. The former fan-constructional river now cuts a deep (> 10m) transverse gully on the northern margin of the fan and reaches the depression between the Fuka fan and the adjacent fan before eventually discharging into the marshes east of ’Amāra (BALTZER and PURSER 1990, 189). There is no significant new fan development, and this leads Baltzer and Purser to suggest that either a reduced rate of supply or a comparatively recent change in this river course is responsible for the present landform evolution. However, taking into account the deeply incised gully and the perennial character of the river, a reduced rate of supply seems more plausible. Again, such landforms suggest a former period of higher discharge and sediment supply followed by the present period of reduced activity.

2.4. The Gulf

The global importance of the late Quaternary geomorphological history of the Gulf for the Lower Mesopotamian Plain is twofold: it is the zone where the Holocene transgression is manifested and where the upstream erosional/depositional changes in the behavior of the rivers should be reflected in the downstream depositional records. The change in sea level affected the flow and sedimentation of the Tigris and Euphrates Rivers far inland on the Mesopotamian plain (HOLE 1994, 130, Fig. 6). Therefore, these changes and the associated Holocene sedimentation and sedimentation rates in the southern part of the Mesopotamian Plain, in the Gulf, and on the Mesopotamian Shallow Shelf in particular, should be considered.

The local importance of the late Quaternary geomorphological history is displayed in shoreline reconstructions of the head of the Gulf. Holocene shoreline reconstructions within an active lacustrine-deltaic environment are extremely difficult. Not only are local depositional and erosional rates uncertain, but so are even general relative sea-level rises.

78 BALTZER and PURSER (1990, 189) suggest the recent changing of the course as most likely.
79 On the evolution of the southern Mesopotamian Plain during the last millennia, see SANLAVILLE 1989. LAMBECK (1996) reviewed the shoreline reconstructions for the Gulf. For a more detailed discussion of the progradation of the Tigris and Euphrates delta, see also POTTS 1997, 30-39.
80 A sea that rises relative to the land, for whatever combination of reasons, is called a submergence, while it is called an emergence if the sea falls relative to the land. Even without a relative change in the vertical direction of sea levels, the shoreline can be shifted inland by marine erosion (retrogression) or seaward by prograding sediment (depositional regression) (FRIEDMAN et al. 1992, 196). According to e.g. LARSEN (1975, 53) at least 150 to 180 km of such progradation must have occurred during the last 5,000 years.
81 Holocene sedimentation rates have been calculated for the fluviolacustrine-deltaic deposits (AQRAWI 1995). Excluding near-surface overburden compaction, these rates have been estimated to be between 1 and 1.8 mm/year throughout the Holocene from 8,400 BP until 3,000 BP. Taking into account these compaction corrections, the rates increased to 1.3 and 2.2 mm/year. During the later stage of the Holocene, rates of 0.4 mm/year were not exceeded.
or fluctuations,\(^2\) being in their turn a combination of glacio-eustatic, isostatic, local subsidence, and neotectonic contributions that are far from completely documented in Lower Mesopotamia.

2.4.1. Sea Level Changes

Changes in sea levels affect the changes of the base level of the longitudinal river profiles. Such a longitudinal profile represents a balance of capacity and competence in the amount and type of sediment load that has to be transported with a given discharge, and slope adjustments are made along with the mutual interaction of other channel characteristics (e.g. cross-section, river pattern, etc.) (MORISAWA 1985, 84). However, adjustments are usually made by the river in terms of scour or fill in the channel bed to lower or raise its gradient (MORISAWA 1985, 84).

The generalized profile of most rivers shows a concave-upward profile \(^3\) so that slope decreases in a downstream direction (MORISAWA 1985, 85). Such a profile is explained by the downstream increase of discharge enabling the sediment load to be transported on progressively lower slopes. Excessively concave profiles are associated with rivers which have extended over Quaternary estuarine sediments as the sea-level retreated (PETTS and FOSTER 1984, 143). The lowering of the base level creates a knickpoint that migrates upstream (BROWN 1997, 33). Such a knickpoint marks the maximum headward erosion of a new erosion cycle that grades to a new and lower base level. Possibly such a knickpoint may be located on the Euphrates near Hit, and the formation of the terraces of Fallūğah and Istakdariyā as erosion remnants might be associated with this erosion cycle (Figure 10).

However, as is often the case in semi-arid and arid regions or with rivers exhibiting a downstream increase of the ratio of sediment load to discharge, some rivers have convex profiles (MORISAWA 1985, 85). More generally, such convex profiles are due to downstream decrease in discharge, for whatever reason (evaporation, flow diversions, etc.), and reflect downstream aggradation during rare flood discharges (PETTS and FOSTER 1984, 144). Longitudinal profiles are rarely smooth since they may contain evidence of past events (KNIGHTON 1984, 148).

\(^2\) It is a gross oversimplification, for the Pleistocene period, to equate the highest sea levels with the warmest climates and the lowest sea levels with the coldest climates. However, climate and sea level are, of course, ultimately related, and climatically caused sea-level changes can take place rapidly. During the Holocene, sea-level rises are estimated to have been on the order of 100 m in 6,500 years (Holocene submergence is known in Europe as the Flandrian transgression). The sea-level curve for the Holocene in the Gulf displays a set of oscillations (small rises and drops, different rates) similar to the so-called Fairbridge view of the Flandrian transgression (FRIEDMAN et al. 1992, 196). The displacement of the shorelines of the Gulf were, at times, very rapid (SARNTHEIN 1972, 260). These rates during the Holocene submergence are estimated at 100 - 120 m/year between 15,000 BP and 12,000 BP (SARNTHEIN 1972, 262). If we omit one stillstand in the submergence (at -30m depth), we can deduce a rate of 50 m/year during the period 12,000 BP and 6,000 BP (corresponding with a sea-level rise of -65 to +2). Around 6,000 BP, the Gulf attained its present coast line in the north and east (SARNTHEIN 1972, 262).

\(^3\) See the generalized river profiles of the Euphrates and the Tigris in GIBSON 1972, 21.
Geomorphological Research in the Mesopotamian Flood Plain

Since the Holocene transgression the end points of the base level have moved several hundreds of kilometers towards the present position of the head of the Gulf. River adjustments towards this new longitudinal profile are complex, but, very generally speaking, must have caused renewed upstream river incision (headward erosion) and downstream aggradation. The former is responsible for river terrace formations in the upstream valleys and the latter for the net accretion of the Lower Mesopotamian Plain. The transitional zone between the upstream incision and downstream aggradation is a zone where the behavior of the rivers is highly susceptible to changes, and it migrates gradually upstream. This transitional zone is perhaps located in the region of our study area.

Unfortunately we have no precise topographical data to represent anything other than generalized longitudinal profiles \(^{84}\) for the Twin Rivers. Even if we had such detailed longitudinal profiles, interpretations based on river gradients must incorporate data on channel cross-sections, discharge, bed morphology, and the amount and type of sediment load. Surely some of these factors changed interdependently or independently during the period of the Holocene.

Fluvial geomorphic responses to sea level changes are immensely complicated and still poorly understood for various reasons. Certainly the intensive character of such responses, which would have destroyed or modified much of the evidence, is an important one, as are uncertainties about rates of sea level changes and the adjustability of channel gradients. Furthermore, during the time-span of the Holocene transgression, other environmental changes caused variations in the input variables (e.g. discharge, sediment load supply, etc.) of the fluvial system. The morphological consequences of these changes also interfere.

2.4.2. Sedimentation History of the Gulf

In general it seems that until 14,000 BP the Gulf was free of marine influences and can be seen as a dry, flat valley of the palaeo-Ṣaṭṭ al-ʿArab (SARNTHEIN 1972, 245). The shorelines \(^{85}\) at the Mesopotamian Shelf zone of the Gulf were reached around 6,000 BP and sea-levels fluctuated a few meters above the present level, probably inundating low-lying areas of South Mesopotamia (SANLAVILLE 1989, 14). The Gulf attained its present configuration about 1,000 BP as a result of the construction of the Tigris-Euphrates-Karūn delta, tectonism, and aggradation along its Arabian and Iranian flanks (UCHUPI et al. 1996, 237).

The bottom of the Gulf forms a smooth longitudinal profile \(^{86}\) which can be extended landwards to the present Mesopotamian Plain.

\(^{84}\) Surely the longitudinal profiles would be compound profiles with concave segments separated by convexities.

\(^{85}\) See DALONGEVILLE and SANLAVILLE 1987, 583, for a synthetic sea-level curve of the last 8,000 years.

\(^{86}\) SARNTHEIN 1972, 250, Fig. 3. SARNTHEIN (1972, 263) finds herein an argument for the absence of tectonism during the postglacial transgression period.
It is believed that much of the sediment supply of the Tigris and Euphrates is deposited near the dense reed beds around their levees and the flood-plain splays bordering the rivers, and that only a small portion of the river sediment load reaches the lake and marsh zone (AQRAWI and EVANS 1994, 773). Therefore, recent fluvial sedimentation in the Gulf is limited. Indeed, ever since the Gulf attained its present shoreline (around 6,000 BP), the sediments brought into the Gulf by the Šatt al-‘Arab and most of the Zagros rivers have been very limited, and the relict sediments in the deeper basins owe their origin to earlier events (SARNTHEIN 1972, 262).

According to SARNTHEIN (1972, 249), these relict sediments cover large parts of the Gulf, are para-autochthonous, and are radiocarbon dated between 7,000 BP and 12,500 BP. He also states that the Gulf has recently received little sedimentation and even that *quantities of sediments delivered by ancient rivers were relatively insignificant* (SARNTHEIN 1972, 259). However, he only investigated the sand-fraction of the “Meteor” samples (SARNTHEIN 1972, 249). Furthermore, the samples are only representative of the Iranian zone of the Gulf.

It is not excluded, therefore, that during the second half of the Holocene, a considerable amount of sediments in the Gulf represent allochthonous, suspended load from former palaeo-Mesopotamian Plain rivers, probably representing various sedimentation rates associated with discharges that differ from the present.

This view is supported by the investigations of BALTZER and PURSER (1990) on the modern alluvial fan and deltaic sedimentation in the Lower Mesopotamian Plain and the Gulf. They see the Gulf principally not as a classical carbonate basin but as an active domain of essentially siliceous and calcareous detrital terrigenous accumulation (BALTZER and PURSER 1990, 175).

Based on echo soundings, UCHUPI et al. (1966, 239) reconstructed microtopography and the late-Quaternary depositional history of the Gulf. They were able to determine the

87 In the main central part of the Gulf, the percentages of relict sediments in the total samples varies from 0.5% to 75% (SARNTHEIN 1972, 247, Fig.2). Unfortunately, such percentage classes do not allow meaningful estimations of relative abundances.

88 Deposited *in situ* within shallow water environments, mainly un lithified and partly lithified aragonitic mud (SARNTHEIN 1972).

89 SARNTHEIN (1972, 249) gives no data on the relative abundance of this fine fraction to the coarse fraction in the samples, but mentions the *terrigenous calcitic clayey mud (marl)* as the present formation matrix of all samples. Even if the fluvial portion for the fine fraction (calcareous clayey marl) always remains < 50 %, it still represents a considerable amount (SARNTHEIN 1972, 259).

90 Most of the samples are located near the eastern boundary of the Gulf (SARNTHEIN 1972, 247, Fig. 2).

91 Mainly responsible for this terrigenous input are the flash floods — typical of many arid environments — along the permanent and ephemeral drainage systems of the Zagros chain (BALTZER and PURSER 1990, 175).

92 Against the para-autochthonous sedimentation of SARNTHEIN 1972.

93 The echo recordings and bottom samples were taken in 1977 (*Atlantis II Cruise*). In some locations in the Gulf acoustic stratigraphic records were obtained for as much as 50 m with a resolution of less than 5 m (UCHUPI et al. 1996, 239).
Geomorphological Research in the Mesopotamian Flood Plain

sites of active sediment accumulation and to map those regions where sediment deposition
was slow or non-existent and relict features were exposed.

Their acoustic basement 94 consisted of sediments that were deposited prior to
21,000/20,000 BP and represents an eroded surface 95 of the dry Gulf (UCHUPI et al. 1996,
258). Above this basement, sediments were deposited during the ‘Holocene’ 96
transgression (submergence) and grouped into early and late Holocene deposits 97 (UCHUPI

The ‘early Holocene’ sediments consist of a lower calcareous terrigenous 98 unit and
an upper aragonite-eolian unit (UCHUPI et al. 1996, 259). These two units reflect a wet
climate phase from 18,000 BP to 12,000 BP and a dry climate phase from 12,000 BP to 9,000
BP (UCHUPI et al. 1996, 259).

The ‘late Holocene’ sediments represent a marl/carbonate unit deposited during the
last 9,000 years under a more humid regime (UCHUPI et al. 1996, 259). Uchupi et al.
grouped these shallow sediments of the Gulf into three facies: a marl, a carbonate, and a
relict domain (UCHUPI et al. 1996, 263). Included with these calcareous and fluvial
sediments is a significant component of eolian detritus deposited by the Šamāls (NW winds)
(UCHUPI et al. 1996, 263).

2.4.3. Sedimentation History of the Northwestern Head of the Gulf

The submarine topography at the head of the Gulf is characterized by northwest-
trending relict sandy ridges of tidal-current or eolian origin that are 10 m high and up to 20
km long (UCHUPI et al. 1996, 266, 238, Fig. 1). Further south of the delta, UCHUPI et al.

94 Defined as carbonate cemented limestones, which represent reworked older carbonate deposits, and as older
limestones.

95 UCHUPI et al. (1996, 258) defined an older (30,000 BP) and short-lived transgression phase, during which the
Central Basin of the Gulf was inundated and the northwest end of the Gulf was the site of fine grained
terrigenous sedimentation (associated with high sediment supply rates during a humid climate in the Iranian
Zagros), followed by aragonite and marl. After this transgression, sea level regressed beyond the Strait of
Hormuz and climate became dry (lowest sea-level stand was reached 21,000 BP at about -125 m). The Gulf
became the site of the continental deposition described by UCHUPI et al. (1996, 259) as a dry depression with
large expanses of dunes and swampy/lake areas in the basins. The sea began to rise again about 18,000 BP,
with maximum rates at 12,000 BP and 9,500 BP and a lower rate during the Younger Dryas (11,000 BP to

96 Against the commonly accepted date for the beginning of the Holocene (around 11,000 BP), UCHUPI et al.
(1996, 258) place its beginning at 18,000 BP. Their early Holocene sequence represents a time span from
18,000 BP to 9,000 BP, and the late Holocene sequence was deposited later than 9,000 BP.

97 The early Holocene deposits rest on the acoustic basement; the late Holocene deposits rest either on the
basement or the early Holocene deposits (UCHUPI et al. 1996, 258). The mean thickness of the early
Holocene unit in the central part of the Gulf is around 20 m. At other locations the isopach map of this unit
is not shown since the top of it is impenetrable (UCHUPI et al. 1996, 258).

98 This unit is associated with the deposition from a fossil Šat al-ʿArab (SARNTHEIN 1972, 245), although other
sediment sources of both the Iranian and Arabian flanks are highly probable (UCHUPI et al. 1996, 261).
(1996) could deduce a pronounced undulating microtopography from the head of the Gulf to about 26°N. The top sediments were dated as ‘early Holocene’.

A smooth sea floor topography is found in the vicinity of Failaka Island at the northwest end of the Gulf where the sea floor is blanketed by two sediment lobes representing either relict deltas or estuarine tidal flats (UCHUPI et al. 1996, 245). This suggests a seaward depositional regression.

UCHUPI et al. (1996, 266) state that recent 99 fluvial sediment contribution from the Mesopotamian Shelf to the central part of the Persian Gulf and beyond is very low. This is reflected in the characteristics of the so called Shelf Plain facies blanketing the region (UCHUPI et al. 1996, 266). This facies contains abundant relict (fluvial component) grains, an eolian component, an autochtonous biogenic component, and sand fractions that are higher than the previous facies (UCHUPI et al. 1996, 266).

The isopach map of the late-Holocene fluvially derived sediments in the Gulf shows thick deposits (> 20 m) along the Iranian flanks and a blanket of 2 meters on the northwestern part of the Mesopotamian Shelf at about the latitude of 29° N (UCHUPI et al. 1996, 264, Fig. 14). This still represents a surface of about 10,000 km², reflecting a considerable fluvial input of the Mesopotamian rivers from 9,000 BP onwards.

Late Holocene sedimentation rates appear to have varied with time, and the present rates are much lower than those in the recent past (UCHUPI et al. 1996, 266).

Prior to 22,800 BP, at a time when the climate was humid, the northwest end of the Gulf was partially filled with continental terrigenous sediments, mainly from Iranian sources (UCHUPI et al. 1996, 266). These deposits were later capped by shallow water marine sediments as the sea transgressed to near the head of the present Gulf (UCHUPI et al. 1996, 266). When the sea level dropped to -120 m, the climate was dry and the Gulf was a waterless depression, with eolian and paralic deposition dominating the region (UCHUPI et al. 1996, 266).

During the transgression from 18,000 BP to 12,000 BP thick terrigenous wedges were deposited in the central and northwestern Gulf, under a more humid climate (UCHUPI et al. 1996, 266).

From 12,000 BP to 9,000 BP the climate became dry again and in the shallower areas aragonitic sediments formed, whereas in the non-inundated areas eolian sediments were deposited. Transgressive phases reworked and redeposited previous deposited sediments. After 9,000 BP the climate became moist again and river run-off built a series of southeast trending sediment lobes (wedges) along the northeast side of the Persian Gulf (UCHUPI et al. 1996, 266). Since the present arid climate was established in Arabia around 6,000 BP, sediment supply to the Gulf from Arabia has been negligible. By 5,000 BP the sea transgressed across the Arabian coastal zone to an elevation of about +1 m and inundated the head of the Mesopotamian Valley (UCHUPI et al. 1996, 266). According to UCHUPI et al.

99 Indeed the delta has been blocked since 2.000 BP (Rzóska 1980, 55, Fig. 23, based on Handbook of Iraq 1944).
(1996, 266) tectonism and construction of the Tigris-Euphrates Delta led to the Gulf’s present configuration.

2.5. Summary Mesopotamian Flood Plain

The Holocene Mesopotamian flood plain consists of the present meandering and anastomosing rivers flood plain and abandoned flood plains. It is in essence a broad, aggradational flood plain, dominated by migration of natural levees and vertical flood basin accretion, confined at the flood plain borders by progressive alluvial fan development or sea-level rise.

During the transition period of the Pleistocene/Holocene and early (mid) Holocene, considerable fluvial erosion under essentially wetter conditions must have modified the flood plain, as is evident from the downstream sedimentation in the Gulf. This erosion was, during the first half of the Holocene, enhanced by the lower base level. During the second half of the Holocene net aggradation (accelerated sedimentation) became dominant, and later anthropogenic factors strongly influenced these sedimentation patterns.

Our working hypothesis is that during the second half of the Holocene a decrease in river discharge and changes in sediment-load (size and amount) supply and river-bank vegetation caused a gradual change in river channel patterns from a (anastomosing) multiple-channel flood plain to the present dominant meandering river pattern and aggrading flood plain.

Presently this flood plain is changing dramatically due to intensive waterworks, which are destroying much of the evidence of flood plain evolution.

3. CHANGING RIVERS

3.1. Fluvial System Variables and Controls

Rivers change because they adjust to fluctuations in the variables and/or controls (independent variables) of the fluvial system. Such adjustments are not random but rather have complex internal relationships. Meander wavelength, for example, increases with increasing water discharge, but it also depends on the type of sediment load moved through the channel (SCHUMM 1967, 1549). Variables of river systems can be grouped based on their spatial scales. Usually when variables are applicable at macro-scales, they are viewed as independent controls of the river system (e.g. independent or environmental basin controls). However, the status of variables (independent, dependent, or indeterminate) changes when considered over different time-scales (SCHUMM 1977, 96-100; KNIGHTON 1984, 162-189).

These include local hydraulic variables such as flow velocity and sediment transport rate, fluvial regime variables such as slope or gradient, channel pattern, and hydraulic geometry, fluvial basin variables such as vegetation, slope steepness, drainage texture, and
water and sediment yield, and regional variables such as climate (precipitation, temperature, etc.) and geology (lithology, structure, tectonic status, initial relief, etc.) (Allen 1977, 16).

A discussion of the dependent variables, the independent controls, and their interrelationships, is beyond the scope of this contribution. However, some general concepts on changing rivers are given below.

3.2. Changes over Different Time Scales and Equilibria Concepts

It is commonplace that rivers, being the central component of the fluvial system, are dynamic, ever changing, ever adjusting, both over time and space. It is therefore necessary to define the temporal and spatial scales under consideration or to know the appropriate scales for such changes. Adjustments of rivers are understood within the system concepts of process-response theories; they can be attributed to either short, medium, or long-term changes and can have spatial implications at different scales.

Spatial scales in fluvial geomorphology are easier to define than temporal ones, since rivers and associated landforms usually have well-defined spatial boundaries. As such, spatial scales can include the entire fluvial system, the different zones of upstream sediment-source, transfer or downstream deposition, or they can be applicable to an individual reach segment. However, the evaluation of the geographical extent of certain fluvial processes remains difficult, if not impossible, as is for instance the case for flood-area prediction or geomorphic hazards (Morisawa 1994).

The use of an appropriate time scale for fluvial systems has been a source of continuous debate (Knighton 1984, 1). This is mainly due to the difficulties involved in attributing absolute time spans or rates to fluvial processes in general and the variability and range of these processes. These concepts of time scales are important however, since they influence our conception of equilibrium within rivers, the relationship between cause and effect of river system variables, and the significance attached to the magnitude or

100 See e.g. Knighton 1984, 2, for a general overview of these interrelationships.
101 For system concepts, see e.g. White et al. 1992. For geomorphic responses to short-term changes, see e.g. Kochel and Miller 1997.
102 Fractal statistics may be applicable here, as extremely small accidental perturbations can cause a system to become unstable and lead to rapid changes.
103 “The present is too short to be the key to the past” (Ager 1973, cited in Schumm 1977, 6). However, according to Schumm, fluvial processes are uniformitarian (Schumm 1977, 7). Usually, these difficulties involve the lack of a high resolution geochronology due to inadequate dating techniques. Eventually, integrated geoarchaeology research can fill this gap.
104 For the concepts of equilibrium within fluvial systems, see Knighton 1984, 90-94; Easterbrook 1993, 125-131; Schumm 1977, 9-13.
105 There are many river variables affecting river changes, and between some of them causal linkages exist. The recognition of causality requires the definition of independent (controls) and dependent variables. Such dependencies are related not only to spatial scales but also to time scales. As an illustration of the relation between cause-effect relationships and time scales, Schumm (1972, 379) gives an example of the hydraulics of flow (flow characteristics), which are dependent river variables over a steady (very short) time scale. As
frequency characteristics of the processes (KNIGHTON 1984, 1). Furthermore, the status of the river variables that influence both river morphology and behavior vary accordingly to the time scales being used (SCHUMM 1977, 96-100).

These time scales are closely related to equilibrium concepts in geomorphology, or more specifically, to the time spans that are thought to elapse in order to attain the equilibrium type. SCHUMM (1977, 10) suggested that landform changes can occur over three time scales: cyclic, graded, and steady. He developed a model of equilibrium components, based on episodic erosion, in order to project river changes and landform evolution in general against a time scale (SCHUMM 1977, 12).

The time periods defined by KNIGHTON (1984, 87) will be used here. He proposed the following: the instantaneous time (< 10^{-1} years), short time scale (10^2-102 years), medium time scale (10^3-104 years), and long time scale (> 10^5 years). For a fuller treatment of this topic, we refer to this work. Figure 5 illustrates the use of these time scales against a change in discharge.

True stability never exists in natural rivers, although, for a certain time scale, relatively constant conditions of controls (controlling variables) may be achieved and the rivers may develop characteristic forms (KNIGHTON 1984, 90). Various types of equilibrium can be defined, of which three are particularly relevant in geomorphic systems: steady-state equilibrium, declining equilibrium, and dynamic equilibrium (EASTERBROOK 1993, 9).

such the helicoidal flow in a river meander is not the cause of meander formation but rather reflects the presence of the bends. In other words, the sinuosity of the river influences the flow character and not the reverse (SCHUMM 1972, 379). Meander formation occurs over a longer time scale as a consequence of river adjustments to variables like slope, sediment load, and discharge.

As an example we might give here the recurrence interval (return period) of floods, which is defined as the average time interval, usually in years, between occurrences of floods. The reciprocal, or inverse, of the recurrence interval is the probability (chance) of occurrence, in any year, of a flood equaling or exceeding a specified magnitude. For example, a flood that would be equaled or exceeded on the average of once in 100 years would have a recurrence interval of 100 years and a 0.01 probability, or a one percent chance of occurring or being exceeded in any year (WATER WORDS DICTIONARY, NEVADA DIVISION OF WATER PLANNING, Carson City 1997). Consultable at http://www.state.nv.us/cnr/ndwp/dict-1/waterwds.htm (last revision 03/12/97).

The status of a variable changes when considered over different time spans of different durations. The status of a river variable can be either independent, dependent, irrelevant, or indeterminate. As an example we might give the river variable of channel morphology. During a long time span of river change (cyclic time), this variable is indeterminate; during a shorter time span (graded time), this variable becomes dependent. When river changes are considered instantaneously (steady time), the channel morphology becomes an independent variable since it has been inherited from graded time. As such the channel morphology controls (as an independent variable) short term variations in flow velocity, water depth, or sediment transport within the channel cross-section. The only dependent river variables during steady time are the measured discharge of water and sediment and flow hydraulics at that specific time (SCHUMM 1972, 376-377).

Other types of equilibria are static, steady-state, declining, dynamic, and metastable (EASTERBROOK 1993, 8). For a general introduction to equilibria in systems, see WHITE et al. 1992, 490-496.

He associates cyclic time (on the order of 106 years) with a dynamic metastable equilibrium; graded time (order of 10^2-10^3 years) with steady state equilibrium; and steady time (order of one day) with static equilibrium (SCHUMM 1977, 12).
Steady-state equilibrium occurs under conditions that change very little over time and the relationship between form and process is stationary. Declining equilibrium occurs when the rate of change drops over time to successively lower rates of change. Dynamic equilibrium consists of small variations around a changing average condition. This last type is characteristic of graded streams and grade slopes in the classical cycle of erosion (EASTERBROOK 1993, 9). When certain geomorphic thresholds are exceeded, a sudden change in the system can occur (metastable) and afterwards a new dynamic equilibrium can be installed.

Fig. 5. Visualization of the Use of Different Time Scales for River System Changes, as Applied Here. The changes of one river variable (discharge) are plotted against different time scales and associated equilibrium status of the river system. The changes displayed at the medium time scale are hypothetical (modified after KNIGHTON 1984, 91, Fig. 4.2 A).

As an example of a steady-state equilibrium model applicable to all the variables of the entire fluvial systems, we can state e.g. that an open fluvial system over a relative short time scale can be seen as a self-adjustable balance between input and output controls through changes in river morphologies (mostly in adjustments of cross-sectional form, river patterns or slope) within the system in order to maintain sediment and water transport continuity in the (energetically) most efficient way. If one input control changes (e.g. if there is an increase in sediment load supply due to overgrazing), the fluvial system will adjust itself (via positive or negative feedback) towards a new equilibrium in which this increased sediment supply will be transported in the most efficient way and towards a new balance between input and output controls. In the case of an increase in sediment supply and constant discharge, this sediment surplus will be deposited within the river channel, thereby...
increasing its gradient and thus transport capacity until further deposition is prevented and a new equilibrium condition is attained. If all other input controls remain constant, a decrease in discharge will essentially have the same result: the transport capacity of the stream channel will decrease and the sediment load will be deposited. Needless to say, fluvial geomorphic responses are much more complex, since usually more than one input control changes and the different input controls are interdependent and interfere with one another.

The concept of equilibrium has a long history in geomorphological literature. However, there is as yet no universally accepted set of criteria for determining whether all or part of a river system is in equilibrium (KNIGHTON 1984, 92). One can question if such a concept of equilibrium has any practical significance, and if such equilibrium conditions will ever be attained in nature. However, empirically it was found that at each location along the river profile a series of relationships exists among the following: discharge, amount of sediment supply, channel cross-section, roughness of the bed form, size and type of sediment load, velocity, and slope (LEOPOLD et al. 1992, 266-281). Rivers adjust themselves towards a quasi-equilibrium among these variables.

The concept of equilibrium, we believe, can provide useful qualitative explanatory models as working hypotheses in order to model changes of the geomorphic system over short to long time intervals and to define, eventually, the spatial extent of such changes.

Before we briefly comment on some actual changes of rivers that can occur, we will quote Knighton one more time, regarding the concept of equilibria in fluvial systems:

Rivers can at best attain an approximate equilibrium, manifest at some suitable time scale intermediate between short-term fluctuations and long-term evolutionary tendencies in a regularity of channel geometry adjusted to external controls. In order to assess the ability of the fluvial system to make the necessary adjustments, there is a need to know the time period required for a stream to develop characteristic forms and the time period over which such forms are likely to persist. Different components of channel geometry adjust at different rates so that both time periods may be expected to vary from one component to another. The potential for adjustment also depends on the scale and resistance of the system so that any tendency toward equilibrium may vary not only between river systems but also between different parts of the same system. As yet there is no suitable theory which can cope with all ramifications to the equilibrium concept (KNIGHTON 1984, 94).

3.3. River Channel Changes

Throughout the Quaternary, river systems have adjusted to fluctuations in discharge and sediment load. High discharges have been associated with the development of high

110 As such, discharge and amount of sediment supply are regarded as independent (external) variables (on short-term scale), whereas slope or gradient adjustments are totally dependent variables of the fluvial system in order to maintain this condition of quasi-equilibrium. In the classical concept of the graded stream, as defined by MACKIN (1948, 471), equilibrium conditions are achieved only by slope adjustments. The other morphological factors vary interdependently with one another during river adjustments.
amplitude and long wavelength meanders, initiation of braiding, and phases of aggradation or incision. Periods of low discharge have been related to channel metamorphosis from braiding to meandering patterns and incision (Brewer and Lewin 1998, 989, and references therein).

River changes can be due to changes in extrinsic controls and/or intrinsic controls. Extrinsic control changes include, for instance, climatic change, tectonics, or human activity. Intrinsic control changes are inherent in the fluvial system and involve, for example, channel migration, cut-offs, and avulsion. In general, responses to extrinsic changes are recorded over long-term periods, and responses to intrinsic changes are instantaneous or short-term events. However, as one might expect, fluvial responses are much more complex and the causal factors are not always clearly delimited. A sudden fluvial response may occur when certain geomorphic thresholds are exceeded because of small intrinsic changes or large extrinsic changes (Brewer and Lewin 1998, 990; Goudie Ed. 1995, 505).

Different aspects of river channel changes are discussed in detail in Gregory Ed. 1977. There a distinction is made between changes of channel geometry, river channel patterns, and river network changes (Gregory Ed. 1977). We will briefly discuss some common river channel changes that can occur during short and medium time periods.

3.3.1. Intrinsic Changes Due to Normal ‘Steady State’ Fluvial Processes in Short Time Periods

Common river channel changes in planform that are due to normal geomorphic evolution of the fluvial system are meander cut-offs, avulsions, and lateral migrations of meander belts. Usually such changes are manifested within short or even instantaneous time periods. They occur when certain geomorphic thresholds are exceeded (Schumm 1977, 8). Although they develop within the normal evolution of river systems on a micro or local scale and as such are not responses to major environmental changes, their impact on societies dependent on irrigation may be considerable, if not dramatic. Figure 6 depicts a meander cut-off in our study area and the successive adaptations of irrigation canal off-takes.

A similar process occurred on the Tigris 5 km downstream from Seleucia. The present, huge abandoned meander is shown as still active on Bewsher’s map of 1885, but is mapped as an oxbow lake on maps of WWI (see also Fig. 1 in Cole and Gasche in this volume).

111 Here normal geomorphic evolution is understood as evolution under steady-state equilibrium. The inputs to a geomorphic system may vary through time, for example on a seasonal basis, but so long as average annual input is constant the system state is constant, and the equilibrium is one in which the relationship between form and process is stationary (Goudie Ed. 1995, 184).

112 Two forms of meander cut-offs can occur: the neck cut-off and the chute cut-off (Allen 1965, 119, Fig. 16).

113 Selby, W.B., Collingwood, W., Bewsher, J.B., 1885 Surveys of Ancient Babylon and the Surrounding Ruins with Part of the River Tigris and Euphrates ... in 1860 to 1865, London, 6 sheets published in 1885, British Museum.
The downstream migration\(^{114}\) of meanders is another aspect of river channel changes. Such a gradual change has destructive effects on any remains along the river channel. Although ADAMS (1981, 8) found little if any evidence of such migrations, translations\(^{115}\) of meander loops do occur more than just sporadically along the present Tigris. However, we agree that the process of meander cut-offs is dominant. Meander forms are usually asymmetrical\(^{116}\) and often display a 'gooseneck' planform (Figure 7).

![Diagram of river channel changes](image)

Figure 6. Short Term River Channel Changes, 10 km Upstream from the Iskandariyah Terrace. Different successive neck cut-offs (1,2,3) of the Euphrates, showing how old canal off-takes (OCO) became unusable for irrigation water supply. In gray: the situation as visible on Declassified Intelligence Satellite Photos of 1967, in black: the situation in 1991 as visible on SPOT panchromatic images. The pattern of meander cut-off 1 is still visible in the field orientations on SPOT (for localization see Figure 10).

Changes of river channels within the confined zone of the meander belt are of course limited in space, but they can have important consequences.\(^{117}\)

114 Migration of meanders can occur in different forms or combinations of forms: rotation, translation, extension, or enlargement (BROWN 1997, 27, Fig. 1-4.b.)

115 See KNIGHTON 1984, 140, for the different meander migration patterns.

116 Based on this asymmetry flow direction can be deduced. For the causes of asymmetry, see CARSON and LAPPOINT 1983.

117 See e.g. LE STRANGE 1905, 36; see also GULLINI 1966, Pl. I, on the changes of the Tigris bed after the 5\(^{th}\) century AD in the area of Seleucia and Ctesiphon and the partly eroded site of New Seleucia (Coche) due to this change.
Avulsions of river channels have a more regional impact\(^{118}\) and occur suddenly for the most part. Avulsion is common to all river channel patterns, but is most common for anastomosing rivers (BROWN 1997, 29). These phenomena can occur repeatedly, so that previous flood basin areas are covered by new levee and flood basin systems. Human interference can slow this process down but demands intensive efforts.\(^{119}\)

\(^{118}\) See e.g. COLE 1994 on the westward shift of the old Kish-Nippur branch of the Euphrates around the end of the second millennium BC and the consequences of later marsh formation in flood basins in the Borsippa region.

\(^{119}\) See e.g. the shift of the main flow of the Euphrates from the Saat al-Hillah to the Saat al-Hindiyah (GIBSON 1972, 26ff).
Geomorphological Research in the Mesopotamian Flood Plain

This dynamic development must have occurred several times in the Mesopotamian flood plain and gave rise to a very complex and poly-cyclic geomorphological pattern as sediment layers of different sedimentation processes were superimposed. Thus it is very likely that the fine-textured surface and subsoil layers of a recent basin area overlay a coarse-textured substratum belonging to an older levee system. In this way vertically stratified complex sediments are formed with a high spatial variability of different textures. To complicate matters, silt has been transported to the plain by canals and irrigation feeders and deposited during irrigation. These irrigation deposits can be several meters thick and can mask completely the original natural sediments. Therefore it is necessary to differentiate between natural sediments and irrigation sediments in order to understand the building up of the Mesopotamian flood plain.

Gradual, lateral migrations of meander belts as a whole can occur as well. These are even more destructive than single meander migrations. There is evidence that such a westward gradual migration occurred in our study area, which we will describe later. However, avulsion must have been the dominant process, since otherwise much of the archaeological evidence still visible today would have been destroyed.

3.3.2. Extrinsic River Changes (Medium Time Periods)

River changes over medium time periods are usually the result of gradual environmental changes such as decrease in discharge, sediment load supply, or bank vegetation. These can be viewed as dynamic changes to variations in independent (extrinsic) fluvial controls. Usually such river changes are climatically induced, but other controls, such as neo-tectonic movements or changes in upstream catchment areas, can occur as well (BROWN 1997, 31). If such an input control is changing through time sufficiently slowly for the river system to adjust, the condition is called a dynamic equilibrium. However, there is always a lag in time between the change in the input variable and the internal morphological adjustments of the system (GOUDIE Ed. 1995, 185). Estimations of the length of such a time lag are extremely complex and make the interpretation of landscape changes very difficult.

River channel changes depend also on river bank resistance and available stream power. Channels are relatively stable when they flow within cohesive banks (sils and clays) and bank vegetation increases this stability even more. As one might suspect, the ratio of stream power to bank resistance is the most obvious control on modes and rates of channel change (BROWN 1997, 26). Changes of this ratio are usually due to extrinsic changes of river controls. However, such extrinsic changes can occur both over the short-term or the medium-term. Changes in sediment-load supply due to upstream deforestation can be

120 HARRIS and ADAMS 1957; BURINGH 1960.

121 Such migration can be attributed to the coriolis acceleration caused by the rotation of the earth. Many large rivers in the northern hemisphere that flow more or less parallel to the meridians have a tendency to migrate to the right in the direction of their flow (FRIEDMAN et al. 1992, 281). See, e.g., the shifting of the Nile towards the east (BROWN 1997, 7). The Euphrates gradually shifted westwards during the second half of the Holocene.
evident over a short-time period. Such changes of the input controls may cause siltation of channels and a shift from a more (multi-channel) anastomosing river pattern towards a bi- or tri-channel one.122

4. ENVIRONMENTAL CHANGE

For many years global environmental change has been a major research topic in numerous international scientific organizations. The changing climate in particular was accorded status of utmost importance for scientific environmental research. The archaeological evidence and historical data of the Mesopotamian Plain, useful for documenting such environmental changes, are still largely neglected and are not yet fully incorporated in this research.123

Since environmental change can be examined across a range of spatial and temporal scales, it is important to distinguish the changes which are recognized on the one hand as regional, gradual, and mid- to long-term processes (sea level changes, soil degradation, vegetation changes, etc.) and on the other hand as events (palaeo flash-floods, river avulsion, abandoned meander belts, etc.) that are more local and short-termed but frequently catastrophic. Furthermore the changing environment may be due to a variety of natural causes and/or human interference. Understanding these environmental changes is important for the understanding of the ancient civilizations of Mesopotamia and vice versa. Unfortunately, even the major environmental fluctuations witnessed by the Mesopotamian Plain are poorly understood (POSTGATE 1992, 21).

4.1. Climatic Change

A detailed discussion of the climatic changes that occurred during the late Quaternary in the Lower Mesopotamian Plain is beyond the aims of this contribution.124 Climatic changes, directly expressed in changes in temperature, precipitation, or vegetation, are, of course, important factors contributing to the nature and intensity of geomorphic processes (RAPP and HILL 1998, 108). Holocene climates may have deviated significantly from present-day climates, and the geomorphic responses to such changes will be preserved in sedimentary sequences and in landforms (RAPP and HILL 1998, 108). COURTY (1994, 54), for example, attributed the geomorphological evolution of the Upper Ğazīrah mainly to

122 This can explain the apparent contradictions in Old Babylonian textual evidence showing siltation of channels and high-flood risks in others, since the discharge could not be diverted anymore by way of various branches and people had to protect themselves by the construction of dikes.

123 http://www.ngdc.noaa.gov/paleo/data.html (last revision 02/10/99).

124 For late-Quaternary climatic changes of bordering areas, see SANLAVILLE 1996 (Levant); SANLAVILLE 1992; LÉZINE et al. 1998 (Arabian Peninsula); HOLE 1994 (Tigris-Euphrates basin); ROBERTS and WRIGHT 1993; BUTZER 1975, 1995 (Near East in general), and Paléorient 1997 23/2 (for e.g. the Anatolian and Syrian region).
Geomorphological Research in the Mesopotamian Flood Plain

climatic fluctuations throughout the Holocene. Unfortunately, there are not enough proxy records available for our study area to reconstruct even global trends, so that any environmental reconstruction for the Mesopotamian flood plain will remain strongly hypothetical. Or, as Potts has stated, views on the palaeoclimate in southern Iraq are as changeable as the weather (POTTS 1997, 3). We believe, however, that Holocene climatic fluctuations must have had an important impact on the geomorphological settings of the flood plain.

On a global scale there exists general agreement on two major trends with regard to the Holocene period. First, there is now general agreement on the so-called global mid-Holocene “Warm Period” from roughly 7,000 to 5,000 BP. This period is characterized in the northern hemisphere by warmer summers and colder winters. However, there is no evidence to show that the average annual mid-Holocene temperature was actually warmer than present temperatures. Secondly, there is also general agreement on the last 1,000 years, where it is shown that, prior to 1900 AD, annual temperature anomalies for the northern hemisphere did not exceed 0.5°C. However, there are not enough records available to reconstruct global or even hemispheric mean temperature prior to about 600 years ago with a high degree of confidence.

4.2. Geomorphic Response

The behavior of a river system may vary in time due to changes in environmental conditions. Certainly two (related) kinds of changes in river behavior are indicated in our study area during the Holocene period. At first there is a change in the sedimentation rates, and then there is a change in the river pattern.

The temporal variations in the Holocene sedimentation rates are probably due to the combined effect of medium-term, dominantly natural sedimentation processes and short-term anthropogenic accelerated sedimentation processes. This natural sedimentation probably started already during the late-Quaternary transgression. The precise morphological consequences of the sea level rise for the two river systems are not yet fully understood. Presumably the corresponding changing equilibrium in each system caused an increasing zone of deposition downstream and an increasing zone of river incision upstream. The impact of Holocene climate fluctuations on this natural sedimentation is still unclear. Again, climatic change is not well understood and its local effects cannot yet be completely documented (HOLE 1994, 121). Surely, climatic change resulted in flow regime changes of

125 The northern hemisphere in particular.
126 The causes are attributed to changes in the Earth’s orbit (NOAA PALEOClimatology Program 1999).
128 This diminishes the global importance of the Medieval Warm Period (9th to 14th centuries) and to a lesser extent the later Little Ice Age.
discharge and sediment load and in changing vegetation cover, exerting a great influence on
the morphology of the channel pattern (PETTIJOHN et al. 1987, 121).

Anthropogenic accelerated sedimentation is probably the main process in the
formation of river levees and probably started, at different rates, during the second half of the
Holocene.

Although we are not able to date it, we can agree with NÜTZEL (1979, 228) that a
transition from a braided river system 130 to the present meandering system must have
occurred in our area in late-Quaternary times, but probably via an anastomosing transitional
phase. We believe that the latter transition occurred during the second half of the Holocene.

5. THE PRINCIPAL ACTORS: THE TWIN RIVERS

Paraphrasing, we can state that Mesopotamia is a poisoned gift of the Twin Rivers or a
vital curse, since "... the watercourses constituted a latent threat to the very existence of
civilization in the alluvial plain" (ROWTON 1969, 307). Indeed the first urban civilizations
had to cope with the unpredictable and unreliable behavior of the changing Euphrates and
much later 131 — when technical or organizational achievements allowed better water
management — the even more dangerous Tigris. Over the medium-term the use of their
water for irrigation, without efficient drainage, gradually caused salinization, so that every
year spring floods or potential summer droughts called for hard labor and creative
adaptations. Furthermore, the timing of the arrival of high and low waters are unfortunate
for the real water needs of the Mesopotamian farmer (POSTGATE 1992, 178, and ADAMS
1981, 3). Notwithstanding, the Twin Rivers were, and still are of course, as Adams stated
for the Euphrates, a ... pulsing artery that carries the gift of life (ADAMS 1981, 1).

It is evident that one cannot understand the morphology, behavior, and evolution of
the rivers without a clear comprehension of the fluvial geomorphic systems in their entirety

130 In case of the Khabur River, for example, the response was a dramatic shift after 5,000 cal BC from a sandy,
braided, semi-arid river channel, with periodic floods, to a silty, meandering one, with perennial flow, flood
plain stability, and a dense, fringing woodland (BUTZER 1995, 127).

131 In our study area the Tigris played, in a more ancient past, a less important role than the Euphrates for
irrigation (see GIBSON 1972, 24). Indeed the discharge of the Tigris shows a greater variability and bigger
difference between high and low water stages than the Euphrates. The Tigris is also incised more deeply,
which makes it more difficult to be used as a feeder off-take for non-parallel irrigation canals. It is therefore
only from Seleucid times — and principally from the Sasanian and Early Islamic periods — that Tigris water
was used to fill irrigation canals. From Sasanian times onwards Tigris water even became a vital supplement
to Euphrates water (ADAMS 1981, 7). More to the south of the study area, there are indications that either in
the Neo-Babylonian or the Achaemenian period, Tigris water was used as an irrigation source, probably with
ancient lifting technology (ADAMS 1981, 192, 350). However, see POTTS (1997, 9 and references therein) for
a reconsideration of the importance of the Tigris River.
Geomorphological Research in the Mesopotamian Flood Plain

(SCHUMM 1977, 2). Such a unified approach to the Twin Rivers and the Mesopotamian Plain does not exist and requires a multidisciplinary integration of data from both upstream controls (e.g. climate, changes in river catchment area, drainage pattern, sediment source area, data on river captures, land-use and vegetation changes, recent geologic history, etc.) and downstream controls (e.g. anthropogenic river bank encroachments or deformations, river channel morphologies, water utilization by man, base level changes, flood plain compaction and subsidence, etc.). Fluvial systems are dynamic and their characteristics vary over time and space with any changes in up- or downstream controls. Therefore, the modern rivers cannot be fully appreciated without knowledge of their history, nor can their history be correctly interpreted without an understanding of their hydraulics and sediment behavior.

5.1. Twins, Similarities and Differences

The Euphrates river is nearly 2600 km long, of which 1140 km run through Iraq. The Tigris river is nearly 2000 km long to its junction with the Euphrates at Qurna, of which 1360 km run through Iraq (RZÓSKA 1980, 42).

5.1.1. Present Flow Regime

In regime, the Tigris and Euphrates are similar (LEBON 1955, 49). Both rivers have their lowest discharge in August-September and a snow-melt regime in spring. The Tigris has a smaller catchment area than the Euphrates but a larger annual discharge. The influence of winter rains is more apparent in the Tigris than in the Euphrates. The regime of the Euphrates is more regular than that of the Tigris. The maximum discharge of the Tigris occurs in April; for the Euphrates it does not occur until the first half of May. Figure 8 displays the discharge data of the Twin Rivers.

At Hit, on the Euphrates, the normal difference between high and low levels is around 3.5 m; at Baghdad the Tigris can rise about 5.5 m (Figure 9). The maximum water levels of both rivers are higher than the flood plain, but the summer water levels are below the flood plain level. As a consequence, winter cultivation depending on flow irrigation predominates unless the water level is raised during summer and water is stored artificially.

One of the major problems with irrigation water is the high suspended load (silt) content. This silt is deposited in the irrigation canals, and therefore either a continuous cleaning of the canals is necessary, or the slope of the canal must be sufficient to prevent deposition of this sediment. As mentioned earlier, the extreme variability of the amount of

132 Two often cited books are The Régime of the Rivers Euphrates and Tigris, London, by IONIDES (1937) and Geographical Handbook Series of Iraq and the Persian Gulf, London, by NAVAL INTELLIGENCE DIVISION (1944). Unfortunately, the author did not have the opportunity to consult these two publications.

133 The amount of precipitation that actually contributes to direct runoff depends not only on infiltration and storage capacities, but also on the type, intensity, and duration of the precipitation. Rain-on-snow-cover precipitation is classified as a high-runoff event (EASTERBROOK 1993, 109). Therefore winter rains during February can cause disastrous flooding too (LEBON 1955, 50).
suspended sediment is an important but difficult to assess characteristic. The average data of dry gram/m3 for the Tigris is around 800, whereas for the Euphrates it is around 550 (AL RAWI 1967, 45).

Since the sediment discharge peak in rivers is usually earlier than the water discharge peak, relatively less sediment contributes to the vertical accretion of the flood basins than to the channel aggradation (MORISAWA, 1985, 119).

![Discharge Data for the Euphrates at Hit and for the Tigris at Fatha. Data are from the period 1931-1966. Lebon recorded a maximum peak discharge of 14800 m3/sec on 02/02/41 for the Tigris, but this peak was probably exceeded during the disastrous flood of March 1954. The general trend displays a delay of the peak discharge of nearly one month for the Euphrates (after ADAMS 1981, 4, and LEBON 1955, 49, 50). For comparison: the monthly discharge data for the late-summer flood of the Nile in 1923 varies between 7000 and 8500 m3/sec (PAULISSEN 1991, 229).]

5.1.2. Floods

Before governmental flood control projects on the Euphrates and the Tigris were begun in the 1950s, basins in the flood plain were liable to unpredictable inundations during the rivers' annual floods. These annual floods usually occurred in the period of April-May.134 However, the yearly water supply of both river basins shows great variability, and

134 As a consequence only seasonal flow-irrigation could be achieved, since the summer water level was below the flood plain level. The surface of land that can be irrigated with flow/(gravity)-irrigation is of course proportional to the height of the irrigation-water level above flood-plain level. Throughout the history of Mesopotamian irrigation, the two main preoccupations of the farmer were in opposition: to reduce the levels of the flood waters and to raise the water in the main irrigation canals in order to achieve flow-irrigation. The former demanded high efforts at a more regional scale than the latter.
Geomorphological Research in the Mesopotamian Flood Plain

years of high magnitude floods as well as low annual discharge can occur.\(^\text{135}\) It is important to keep these hydrological conditions in mind when interpreting palaeo-environmental conditions. The extreme variability of the amount of silt in suspension must also be taken into account.\(^\text{136}\)

![Graph showing monthly gauge readings at Ramadi (Euphrates) and Baghdad (Tigris). Only maximum and minimum levels are shown for the period 1906-1932. Level differences are more pronounced on the Tigris (after Rzóska 1980, 50).](image)

Fig. 9. Monthly Gauge Readings at Ramadi (Euphrates) and Baghdad (Tigris). Only maximum and minimum levels are shown for the period 1906-1932. Level differences are more pronounced on the Tigris (after Rzóska 1980, 50).

At present, flood control follows a plan adopted by the Iraqi government in 1955.\(^\text{137}\) In order to eliminate the danger of floods and to control and regulate the water supply, storage reservoirs were built in both the Tigris and the Euphrates basins. Downstream on the Tigris, the storage reservoir of the Ţartār receives floodwater via the Ţartār inlet canal, just upstream from the Šāmarrā' barrage. The level of this reservoir can be regulated via the Ţartār outlet canal towards the Euphrates or via the new Ţartār outlet canal towards the Tigris again, just upstream from greater Baghdad (Figure 10).

The Ḥabbāniyāh depression must have played an important, natural role in history with regard to the regulation of Euphrates floods downstream. Indeed, dangerous high floods of the Euphrates could discharge naturally into the Ḥabbāniyāh depression via the Suteih depression downstream from present-day Ramādī, thereby diminishing the discharge

\(^{135}\) AL-KHASHAB 1958, 46; CHARLES 1988, 39. See also SANLAVILLE (1990, 19) for the annual discharge variability of the Euphrates in Syria for the period 1950-1963.

\(^{136}\) For data, see e.g. BERRY et al. 1970, 132.

\(^{137}\) AL-KHASHAB 1958, 35; BURINGH 1960; LEBON 1955. Not all of the proposed irrigation extensions of the so-called Haigh Commission were completed.
and danger for the low-lying flood plain (Figure 10). When entering the flood plain near Fallūgah, the flood waters of the Euphrates were diverted into various flood channels, bifurcating radially towards the southeast. It is evident that such flood channels also gradually built up a kind of levee system which can be called flood levees. As such, they were formed not by the nearly annual overbanking, as in the case of natural levees, but only by the flood deposits associated with high flood years, depending on the recurrence interval. Indeed, it is not unlikely that such a flood channel can exist over a short-term period, unless the vertical accretion of its levees prevents it from further being used as a flood channel and a new one is formed. Such flood channels may have become ancient inundation canals, which can be regarded as a method, in this part of the plain, of controlling part of the Euphrates flood (LEBON 1955, 49).

A second natural outlet may have existed for the floods of the Euphrates through the Abū Dibbis Depression on the right bank of the river just opposite the modern Laṭīfīyah Canal at the latitude of the terrace of Iskandariyah. Before the flood control projects of the 1950s, most cultivated land was protected against floods by the method of controlled breaching. When the rivers were in flood, the river banks were deliberately breached at points where the excess water could flow over barren land (LEBON 1955, 50; and, for evidence of this practice in the Old Babylonian period, see Cole and Gasche, this volume, p. 11). In order to prevent the flooding of Baghdad at the beginning of this century, for instance, the left bank of the Tigris was breached just above the city. The flood waters passed east of Baghdad at the foot of the Diyala fan and joined this river further down. And during floods ... the site of the city becomes an artificial island, encircled by the earthen walls which alone prevent its whole area from inundation to a depth of from 10 to 15 feet (LEBON 1955, 51).

Unfortunately we do not have continuous medium-term observations of flood levels such as exist for the Nile (HASSAN and STUCKI 1987, 39-41). According to BURINGH (1960, 52), flood inundations could occur almost every 3 or 4 years. Evidence of historical high-magnitude floods for the Euphrates in the second millennium BC are recorded in roughly 1654, 1620, and 1580 BC (see Cole and Gasche, this volume, pp. 7-9).

138 According to LEBON (1955, 53) exceptional high floods could overflow further into the Abū Dibbis depression via the Mujarrah channel between the two depressions. Presently the Ḥabbāniyah depression is, apart from being an escape, also a storage reservoir. Flood water can enter the depression upstream from Ramādī, the water level is controlled via the Mujarrah regulator and escape channel to the Abū Dibbis depression, and stored water from the Ḥabbāniyah lake is allowed to return to the Euphrates when needed via a feeder at Ḥabbāniyah.

In fact, there is evidence that a similar system may have been functioning already in the first half of the second millennium BC. According to Cole and Gasche (this volume, pp. 11-13), it is likely that the Old Babylonian king Samsuiluna constructed an escape canal for Euphrates floodwaters into the Ḥabbāniyah depression, and then later built another canal (or a qanat-like structure) between this depression and that of Abū Dibbis to the south (or at least he contemplated such a project).

139 See WILLCOCKS 1917, Pl. 2, showing a passage from the Euphrates towards the Abū Dibbis depression at the latitude of the terrace of Iskandariyah with ... overflow of the Euphrates in high floods. However, according to Cole and Gasche (this volume, p. 13, n. 52), this passage is untenable from a topographical point of view.
LE STRANGE (1900, xxx, xxxi) cites major inundations of the Tigris around Baghdad in 941, 1074, 1159, 1174, and 1217 AD. This limited array of data is presented here simply to set an approximate estimation of the frequency of high-magnitude floods at 2-3/100 years \(^{140}\) for both rivers. We do not have sufficient data to differentiate recurrence intervals for the Twin Rivers. However, floods of the Tigris have always been more severe.

It should be noted that besides the 'normal' flooding of the rivers and the high magnitude floods, extreme floods can perhaps also be distinguished. Recurrence intervals of such extreme events are, of course, highly variable (PETTS and FOSTER 1985, 35). Their recurrence is mainly related to the variability of intensity, duration, frequency, and type of precipitation \(^{141}\) in upstream areas and complex precipitation-runoff relationships (drainage densities, interception and soil water storage capacities, vegetation cover, soil saturation, etc.) Such extreme events must have had an important influence on the evolution \(^{142}\) of Mesopotamian landscape and civilization. \(^{143}\) Their interpretation and impact \(^{144}\) at mesoscale, however, remain hypothetical due to a lack of adequate field descriptions.

A regional synthesis of palaeoflood chronologies for the Twin Rivers should be established in order to relate it with regional and global climatic fluctuations. But establishing such a palaeoflood chronology based strictly on geomorphological surveys alone would be extremely difficult in a broad \(^{145}\) and active flood plain. Furthermore, global climatic fluctuations are poorly understood.

6. THE MEANDERING RIVER FLOOD PLAIN OF THE EUFRATES AND TIGRIS

6.1. Present Topography, Landforms, and Landscape in General

6.1.1. Present Topography

The Mesopotamian meandering river flood plain is a nearly flat region, gently sloping to the southeast with elevations varying along the Tigris from 65 m at Sāmarrāʾ to 19 m at Kūt; and along the Euphrates from 60 m at Hit to 25 m at Hillah. The Euphrates bank near

\(^{140}\) Frequency analysis of floods requires good quality hydrological records for longer time periods. Such data do not exist for remote times, so we have to rely on indirect information from textual sources. However, the recently published Babylonian astronomical diaries can provide more insight into the hydrography of the Euphrates, especially during the second half of the first millennium BC.

\(^{141}\) See e.g. HUSSEIN 1996.

\(^{142}\) See e.g. the Early Dynastic Flood level in the Y trench at Kish (GIBSON 1972, 83ff).

\(^{143}\) It is illustrative that the Akkadian word for flood (mllu) became in time a synonym for anarchy and disaster (ROWTON 1969, 312).

\(^{144}\) This may have contributed to the upheaval evident in such periods as the Kassite dark age, the Aramean dark age (11th - 9th centuries BC), the transition from the Sasanian to the Islamic period (6th - 7th centuries AD, and roughly the 10th century AD, the period of the disintegration of the Abbasid Caliphate (ROWTON 1969, 312).

\(^{145}\) Palaeoflood chronologies were successfully established in rather narrow flood plains based on preserved evidence of the largest floods and slackwater deposits. Such deposits are accumulated and preserved along the margins of the river valley (EASTERBROOK 1993, 105).
Fallūghah is situated about 43 m above sea level, while the plain around Baghdad and the 'Aqar Qūf Depression are around 34 m and 31 m respectively. Nevertheless, this flood plain shows a very important meso-relief of depressions and levees. This relief is the combined result of sediment aggradation along river channels, flood deposits during the Holocene, and cultivation/irrigation practices for a period of more than 6,000 years.

This sediment accretion is well expressed in the topography east of the Euphrates between the terraces of Fallūghah and Iskandariyah, south of Iskandariyah along the Kutha (Nahr Ibrahim) and Babylon levees, between the Kutha levee and the present Tigris, along the Nahrawān canal, along the Dujail Canal, and also along the present natural levees of the Twin Rivers (see Figure 11). As already mentioned earlier, in this zone the natural levee of the Euphrates is at a higher topographical position than that of the Tigris. Consequently, modern irrigation and drainage canals take their water from the Euphrates and flow generally in a northwest-southeast direction across the flood plain. Figure 10 depicts only the main modern drainage canals. These canals connect the main flood basins in this area and conduct water towards the central part of the flood plain, to the so-called ‘Third River’ drain.

Most of the modern irrigation canals are situated on these topographically higher levees (Figure 15, and Cole and Gasche, this volume, Map 1). These levees represent former natural levees and/or flood levees associated with older watercourses of the Euphrates or Tigris; they can also represent topographically expressed old main irrigation canals that were in use over a considerable period of time; or they can represent a combination of both. The latter are called irrigation levees (BURINGH 1960, 153). When the main formation processes are not clear, we will hereafter arbitrarily call these levees topographical levees.

146 See Cole and Gasche, Map 1, in this volume for one-meter contour interval topography.

147 This accretion was of course not uniform throughout the plain. The data given hereafter are only meant as general indications. According to BURINGH (1960, 156), almost the whole flood plain of the Euphrates, Tigris, and Diyala is covered by irrigation sediments varying in depth from 0.5 m to 5 m or more. At Kish (Y trench), virgin soil is at 9 m below plain level (GIBSON, 1972, 308, Fig. 61). Above this virgin soil are layers dated to the Jemdet Nasr period. However, some tells of the same period are above plain level (GIBSON, 1972, 31). Ra‘s al-Ami‘a (Ubaid period), shows virgin soil 4 m below the surface (GIBSON, 1972, 31). At Tell 'Uqair virgin soil is situated 5 m below plain level (ADAMS, in GIBSON, 1972, 198). At site 221 from Adams’ Akkad survey, the Akkadian layer is at a depth of 5-6 m below plain level (ADAMS, in GIBSON, 1972, 204). At Abū Salabikh virgin soil underlying the Early Dynastic occupation was encountered at depths of between 1 and 2 meters below the level of the surrounding plain (ADAMS 1981, 347, note 5, citing POSTGATE and MOOREY 1976, 135, 141, Fig. 5). At Tell ed-Dēr (approx. founded around 4,300 BP) virgin soil is situated 3 to 4 m below present plain level (GASCHE 1985, 580 n. 2). The base of Abū Habbah (Sippar) is defined at 28.5 m, which corresponds to an accretion of 5 to 6 m (PAEPE and BAETEMAN 50, Fig. 3). Mashkan-Shapir lies some 4 m below the present plain (HOLE 1994, 142).

149 This main drain between the Tigris and the Euphrates, dug in 1989 and 1990, collects the brackish water of the northern flood plain and expels it into the Gulf. Near Nasiriyah it runs under the Euphrates by way of large tubes.

150 The cleaning and dredging of these old irrigation canals and the silting up or collapse of disused old irrigation banks and protective dikes cause an anthropogenic levee along the canals.
Fig. 10. General Overview of the Meandering Rivers Flood Plain. The gray area corresponds to the present cultivated flood plain. The major modern drainage canals give an indication of the main topography between the Twin Rivers. Some archaeological sites mentioned in the text are indicated. The central inset shows the localization of the study area.
The same nomenclature can be used for the depressions in the flood plain. Some depressions are natural flood basins, like the 'Aqar Quf depression, which was in remote
times a former lake and at present a large basin almost without irrigation sediments
(BURINGH 1960, 172). Other depressions are irrigation depressions, which were originally
basin depressions but are now silted up with irrigation sediments (BURINGH 1960, 156).

These main morphographic units of natural or irrigation levee/depressions have
specific soil characteristics described by BURINGH (1960, 156ff) in different soil series.151

As one might expect in an active flood plain that is characterized by net vertical
accretion, the present topography can mask or even reverse completely the original
topography that existed before the formation of the main levees. However, according to
Cole and Gasche (this volume, p. 14 and Map 3), the present levee system is much the same
as that which existed in the first half of the second millennium BC and probably before. A
very strong argument in their favor is the ...\textit{spatial distribution} of archaeological sites
which shows that a great number lie directly on the center part of the main levees while
most of the others, located at some distance, are on appendages of the main levees...
The general distribution pattern demonstrates the perenniality of the basic system, especially in
light of the fact that all periods of occupation from Ubaid to Islamic are covered [on their
Map 3].

We assume that the net vertical accretion described in the previous paragraph probably
started during the (early) mid-Holocene period, probably at different rates and affecting
different localities. The sedimentary environment in which this accretion took place was
probably characterized by a multi-channel (anastomosing) riverine landscape, reflecting the
gradual transition from the more braided river pattern that existed during the Late
Pleistocene period.

6.1.2. Landforms
6.1.2.1. Relict Landforms

This part of the flood plain is characterized by the single-channel meandering rivers of
the Twins. In the present Mesopotamian flood plain the coarsest sediments that can be found
are fine sandy deposits, since the competence152 of the rivers is limited to the fine and very

151 BURINGH (1960, 148, 156) describes the \textit{Babylon and Baghdad soil series} and \textit{Abu Gharraq soil series} as
typical for the natural levee and natural basin soils respectively. For the typical irrigation levees and the
irrigation depressions, he describes the \textit{Tamaziyah soil series} and \textit{Ananah soil series} (BURINGH 1960, 158,
159).

152 Defined as the ability of a current of water to transport sediment, in terms of particle size rather than amount
(capacity). It is measured as the diameter of the largest particle transported as bed load. This is mainly a
function of the bed velocity. It should be noted that contrary to intuition, particles smaller than fine sand are
difficult to erode; because of cohesion, such fine particles tend to stick together and therefore the most-
movable sediment is fine sand (FRIEDMAN \textit{et al.} 1992, 245). However, once these fine particles are in
suspension they remain longer in suspension at lower velocities than their entrainment velocities (Hjulström
effect).
Geomorphological Research in the Mesopotamian Flood Plain

fine sand fractions (BURINGH 1960, 145, 151). Landforms that consist of coarser sediments are therefore relict landforms, like the fluvial erosion terraces of Iskandariyah and Fallūghah. The gravelly and gravelly-sandy materials of these landforms are associated with Pleistocene palaeo-discharges of a higher magnitude. Their topography and texture in general decreases towards the southeast. In origin these landforms can perhaps be attributed to Pleistocene alluvial fans deposited by braided river systems.

These Pleistocene terraces and the reworked or redeposited sandy outcrops of terrace material have a high content of secondary gypsum. The terraces occupy the highest topographical position in the study area, and are distinct mesa-like morphological features with a maximum height of 10 m above the plain and well developed escarpments.

The sandy outcrops are irregularly spread over the area south of the Fallūghah Terrace. They are situated at topographical positions near the flood plain level, or they are covered by irrigation sediments. Although sometimes situated only a few decimeters above the level of the plain, they are clearly distinguishable in the field due to the good internal drainage conditions. Their localization is indicated on Figure 11. The Kassite capital Dūr-Kurigalzu (‘Aqar Qūf) and Baghdad International Airport are situated on such sandy outcrops.

Figure 12 shows the cumulative probability graphs of the decalcified sand fraction of three samples taken from relict terrace material. AQ PA is a sample taken from the sandy gravel layer 3.5, sondage A at Abū Qubūr North (see DE MEYER and GASCHE 1986, 8, 11). Median size of the sand fraction is medium sand and graphic standard deviation is 1.00 φ. This graphic standard deviation is a measure for the sorting of the sediment and corresponds to moderately sorted material (LINDHOLM 1987, 171). FalT1 corresponds to a surface sample from the Fallūghah Terrace. This gravelly to sandy-gravelly deposit has a median sand size fraction of fine sand and a graphic standard deviation of 0.91 φ (moderately sorted). Finally, RT1 corresponds also to a surface sample of an outcrop of reworked loamy sandy terrace material, situated a few meters above plain level, 25 km downstream from Fallūghah. Its sand fraction is very similar to that of the Fallūghah Terrace itself and is also moderately sorted (0.78 φ). Far too few samples were taken and field observations made to interpret these reworked terrace outcrops in more detail, and some sandy to gravelly-sandy deposits in the flood plain suggest a far more complex sedimentary history. However, until further field work can be done, we will interpret these deposits as reworked and redeposited sediments of upstream Pleistocene terrace material under different fluviatile conditions than those that exist today.

153 The reworked or redeposited terraces are generally loamy sand in textural class.

154 See DE MEYER and GASCHE (1986) for a description of sandy to gravelly-sandy fluviatile surface deposits at Abū Qubūr North in sondage B, two meters above plain level. These deposits contain Akkadian to Neo-Babylonian potsherds, imbricately stratified, and are attributed by the authors to violent inundations (DE MEYER and GASCHE 1986, 15).
Fig. 11. General Macromorphographical Map of the Mesopotamian Meandering Rivers Flood Plain. Localization of samples for granulometric analyses (see Figure 12): ® = Pleistocene terrace FaT1; ◐ = Reworked terrace RT1 and ® = AQ PA. Compiled after various sources.
It is still not clear how the Pleistocene terrace deposits in the flood plain are related to the gypsiferous, gravel deposits of the Western Plateau, west of the Euphrates. Although they are mapped as Tertiary deposits on the geological map of Iraq, their morphology and superficial sediments are quite similar to those of these terraces. They might be reworked as alluvial fans attributed to Pleistocene palaeo-flows of the Western Desert.

Fig. 12. Probability Graphs of the Sand Fractions of Relict Terrace Material. For sampling locations see Figure 11. See text for further details.

6.1.2.2. Present Landforms

Most of the typical landforms, characteristic of all flood plains and already described above, occur in the Mesopotamian flood plain. The major landscape forming phenomena belonging to this flood plain are the river levees and the river basins. These are discussed in detail in BURINGH (1960, 143-179).

The present river levees of the Tigris and the Euphrates form a broad belt situated a few meters above the flood plain. The Tigris has built up a broad levee which forms a huge ridge rising 3 to 5 m above the plain. Notwithstanding the higher topographical position of this levee, the mean water-marks of the Tigris are below the plain level, making gravity

155 The Western Plateau between the Euphrates and the Abu Dibbis depression is indicated as a Miocene Middle and Upper Fars formation; southeast of this depression the Miocene/Pliocene Dibibba formation of sandy gravels has a distinct triangle fan planform clearly visible on satellite imagery, with one edge bordering on the Euphrates flood plain (JASSIM et al. 1986). This edge gently dips towards the Plain, whereas the two other edges of this triangle form clear escarpments suggesting tectonic activities. PAEPE (1971, 15) gives a profile section of this latter unit where the top 10 meters are Quaternary gravels and sand, showing cross-stratifications at the interface with the Tertiary silt material.

156 BURINGH 1960.
irrigation without 'modern' lift irrigation techniques difficult. It was only during the Seleucid and Parthian periods that economic life shifted to the Tigris (according to Gibson 1972, 24). The river bed of the Tigris in the study area seems to have been less liable to major course changes in historical times than that of the Euphrates. This is also the conclusion reached by Cole and Gasche (this volume, p. 17, and Maps 8-9), who have demonstrated that the Tigris at this latitude must have followed a course during the second millennium BC that more or less corresponded with its modern one. The levee of the Euphrates, on the other hand, corresponds to a belt of minor dimensions, and generally speaking we can say that the Euphrates system shifted westward in steps toward its present course at the rim of the Western Plateau.

In the meandering river flood plain, the gradient of the Euphrates between Fallūğah and Hindiyah is 0.1m/km, whereas the gradient of the Tigris between Baghdad and 'Azīziyāh is only 0.065m/km (Figure 13). Sinuosity indexes \(^{157}\) are respectively 1.24 and 1.74, which classify the Euphrates as a sinuous, single-channel type and the Tigris as a meandering, single-channel type (Morisawa 1985, 100). The mean meander belt width of the Tigris is twice that of the Euphrates and, as is obvious on any map, the amplitude and wavelength of the Tigris meanders greatly exceed those of the Euphrates.

\(^{157}\) Here defined as the ratio between river channel length and the length of the central axis of the meander belt.

Fig. 13. Gradient of the Euphrates and the Tigris, Expressed in Channel Distance to their Conjunction. In our study region, the Euphrates has a steeper gradient and a higher topographical position than the Tigris. SI=Sinuosity Index. Note the confirmation of the general relation between SI and gradient: the lower the gradient, the higher the sinuosity of meandering rivers. 1 = Fallūğah terrace; 2 = Iskandariyah terrace.
The width and depth of both rivers \(^{158}\) (at the latitude of Baghdad) depend on the seasonal discharge and morphology of the channel bed. Here the width for both rivers varies around 250 m, whereas the depth of the Euphrates ranges from 5 to 8 m and the depth of the Tigris from 10 to 15 m (RZÓSKA 1980, 49).

The general characteristics of the river levees are their relatively coarse texture (fine sand to silty clay loam,\(^ {159}\) with the texture usually getting coarser with increasing depth); their higher topographical position in relation to the river and the basins (2 or 3 m above the basins); the relatively good physical condition of their soils; and their relatively shallow groundwater table (which fluctuates with the water level in the river channel and depends locally on the vertical variability of the texture). As a result of the natural drainage to the basins and the finer texture of the basin soil material, the soils on the levees are well drained. This makes the levees preferential locations for cultivation and settlement due to the absence of salinization. However, typical for the levees is the irregular occurrence of saline spots on the top convexity near the river channel and along both sides. Due to both the capillarity of the soil and the morphology of the levee, the groundwater table on the top convexity can be only 1 to 1.5 m below the surface in places, which results in the formation of a saline crust.

Several major depressions exist and can be traced by following the main drainage canals. The Mahmúdiyah main drain and the Abù Ghrāib main drain approximate the boundary of drainage and deposition of sediment between the Euphrates and Tigris systems. The river basins occupy the largest proportion of the area comprising the flood plain. The landscape and physical soil conditions gradually change from uniform levee units to the basin units. The general characteristics of river basins are their fine texture (silty clay loam, silty clay, and clay) with up to 70% clay particles, their low topographical position, and their high groundwater table, resulting in poorly drained, sometimes waterlogged, soils and the presence of saline or strongly saline soils.\(^ {160}\)

More typical of the flood basins of the Mesopotamian plain are the gilgai relief or bad-structured depression soils and the salinization (HARRIS 1958). However, this salinization is not restricted to the depressions alone. As mentioned above, on the top convexities of levees — irrigation levees \(^ {161}\) in particular — salinization can be extremely severe due to the high groundwater table and seepage \(^ {162}\) (BURINGH 1960, 155).

Of particular importance for the reconstruction of the Mesopotamian palaeo-landscape are the abandoned channel fills and associated point bar deposits in abandoned meanders.

\(^ {158}\) As mentioned already before, accurate and precise data are rare. Multi-temporal data on discharge, sediment load (amount, type, and characteristics), and river morphologies (cross-sectional area, river bank material, river bedform, pattern, gradient) at different spots along the river are minimum requirements for any geomorphological research on river channels.

\(^ {159}\) USDA textural classes are used here.

\(^ {160}\) BURINGH 1960, 162.

\(^ {161}\) The so-called puffed solonchak soils, which are typical for the irrigation levees, argubs, and tells in Iraq (BURINGH 1960, 163).

\(^ {162}\) Along both sides of the Šāṭ al-Ǧarrāf this salinization process due to seepage on both sides of the levee is clearly visible on multi-spectral satellite imagery.
Fossil meander traces have been mapped, based on aerial photo interpretation\(^{163}\) by GASCHE (1985, 581). Most of these meanders are located on the topographical levees, although some of them are situated in the present flood basin context. Their localization is indicated in Figures 11 and 14. Such fossil meander traces are evidently indicative of palaeo-river patterns or watercourses. Some of these traces have been the subject of more detailed geomorphological research. BAETEMAN (1980) identified the fossil meanders on the topographical levee southeast of Tell ed-Dēr as point bar deposits formed by an ancient branch of the Euphrates. The author identified point bar-like deposits of minor magnitude just southwest of Abū Qubūr in a present flood basin context (Figure 11). It should be noted, of course, that not all meander traces visible on aerial photos can be directly connected with natural channel bed deposits. A similar meandering pattern can be found at the free-flow end of irrigation canals or can be attributed to flood gully strips (BURINGH 1960, 162). More detailed fieldwork is needed to interpret these traces more definitively.

Although no distinct and continuous eolian region appears in our study area, minor eolian deposits and wind erosion features are recognizable in the field.

6.1.3. Landscape and Irrigation Patterns

Between the present rivers, the landscape is crisscrossed by remains of old diachronous irrigation canals. The remains of these primary\(^{164}\) irrigation canals for the area south of 'Aqar Qūf and north of Kutha have been mapped by Gasche based on aerial photos from the 1970s (Figure 14). A comparison with satellite images from the 1990s shows that most of these remains in our study area have been leveled during construction of modern irrigation/drainage projects.

As mentioned before, these vestiges reflect irrigation units that were functional at different time periods, sometimes superimposed one upon another. Some of them were still in use at the end of the 19\(^{th}\) century AD.\(^{165}\) One functional unit of such an old irrigation canal usually takes the form of two parallel irrigation walls (argubs), wider at the main canal off-take, oriented nearly perpendicularly to the main watercourse, and directed towards the lower lying areas. In order to raise the water level in such canals, cross-regulators must have been used. However, the precise functioning and maintenance of such systems in relation to the watering of the fields is still unclear, as is their relative dating. We can suppose that these systems needed regular cleaning and dredging due to siltation of the canals, which was a factor that largely contributed to the gradual accretion of the canals but in a certain way was also beneficial for their use as flow-irrigation canals. However, when such canals grew

\(^{163}\) See Figure 3 in Cole and Gasche in this volume. Where these traces are not cultivated the typical perennial weed Tamarix (Tarfa) is characteristic.

\(^{164}\) According to the definitions of PEMBERTON et al. 1988, 209.

\(^{165}\) On the Bewsher map, the area around present Maḥmūdiyyah was a main zone of cultivation and irrigated by a single canal from the Euphrates that was 35 km long.
too high, a new canal was constructed parallel to the old one (King 1915, 170). This resulted in a specific topography, as is evident from Figure 14.

In order to understand the ancient landscape, a profound knowledge of the extent, nature, and dynamics of the palaeofluvial systems is necessary, as is an understanding of the ancient irrigation systems. With regard to the irrigation system we must consider the spatial-functional unit in time of water capture, storage, transport, and the flooding of fields, as well as time-spatial relationships with other irrigation systems. Our knowledge of both the irrigation systems themselves and their evolution in history remains fragmentary. The study of these topics is of utmost importance, but it is made difficult due to the lack of relevant data or cartographic material, and last but not least, by the enormous infrastructural changes of the modern Iraqi landscape due to the implementation of master irrigation and drainage projects.

Surely the Mesopotamian landscape is a complex environment resulting from an interaction of natural and anthropogenic conditions. The processes of formation are still not very well understood, since it remains difficult to disentangle the natural and anthropogenic factors.

6.1.3.1. Islamic Canals

The same general planform configuration of the modern irrigation canals can be found during Early Islamic and later times, as described by Le Strange (1905, Map II). This interpretation of the medieval situation, in our opinion, is highly informative, since it reflects in a general way the patterns of irrigation that were outlined certainly already as early as Parthian/Sasanian times (and much earlier, according to the conclusions of Cole and Gasche elsewhere in this volume) and that existed without major modifications to pre-industrial times. Occupation density, landscape modification, and land-use intensity must have been quite considerable during this time span.

166 Probably from at least Neo-Babylonian times, the area between the two rivers has been irrigated by left-bank canals fed from the Euphrates. See also the conclusions reached by Cole and Gasche elsewhere in this volume (specifically pp. 32-35, and Map 9).

167 It seems that irrigation here reached a great extent during the Sasanian period (Gibson 1972, 24). Under the Abbasid Caliphate, the irrigation system was initially well maintained but gradually became neglected. After the Mongol invasion, in the middle of the 13th century, the irrigation system collapsed and was left unrestored by the Ottoman Turks (Whyte 1961, 108).

168 We have for the area delimited by the Twin Rivers, the latitude of 'Aqar Qūf, and the latitude of Iskandariyā (approximately 2500 km²) only very limited site survey data (the so-called 'Akkad Survey') (Adams 1972). The distribution of tells in this area, however, is very dense and strongly related with the main irrigation patterns. Although for the 'Akkad Survey' the Parthian period represents the highest site-occupation value and, together with the Old Babylonian period, the highest percentage of reoccupied or newly founded sites, we have the impression that the occupational densities of the Sasanian to Late Abbasid periods have been strongly underestimated. But the reader should take note that it is difficult to draw definite conclusions about old settlement patterns here, since the diagnostic sherds utilized by Adams in this survey are not always characteristic of the periods which they are supposed to represent (see Cole and Gasche this volume, pp. 1-2, n. 2). Nevertheless, as is evident from aerial photographs from the time before
The main irrigation canals that transversed the flood plain from the Euphrates towards the Tigris are depicted schematically by Le Strange (1905, Map II). It must be stressed that his reconstructions remain hypothetical, and that the Arabic, Talmudic, and Classical sources are in critical need of re-examination. Nevertheless, from north to south, he distinguished the following canals:

- The Dujail (Little Tigris). This canal left the Euphrates 60 km downstream from Hit (presently near Habbaniyah) and was originally a canal from the Euphrates to the Tigris (Le Strange 1905, 65, 51). In the beginning of the 10th century its western part had become silted up, and its eastern course and lower course were integrated into a new Dujail canal that short-cutted the Tigris below Kadiisyah and irrigated the area northwest of the Tigris upstream from Baghdad. The older Dujail canal must have run along the approximate line of the present Nahr Saklawiyah or Dulaim drain.

- The Nahr 'Isā (redug in the 12th century). This canal left the Euphrates below Tell Anbār (near present-day Fallūgah) and flowed into the Tigris by way of various branches, below the Round City (Le Strange 1905, 30, 66). It was the first navigable canal from the Euphrates into the Baghdad area. From the left bank of the Nahr 'Isā, the Şarāt canal branched off and ran parallel to the former, before pouring its water into the Tigris below the Round City (Le Strange 1905, 66). This system fed West Baghdad by that time. The Nahr 'Isā may have run along the approximate line of the present-day Abū Ghraib North irrigation canal.

- The Nahr Şarşar. This canal branched off from the Euphrates 15 km below present-day Fallūgah and flowed into the Tigris 20 km upstream from Madain (Ctesiphon). This canal was navigable (Le Strange 1905, 67). At the crossroad of this canal and the route to Mecca was situated a town that also bore the name Şarşar. This canal may have followed the approximate line of the modern Abū Ghraib South irrigation canal.

- The Nahr al-Malik. This canal began 25 km downstream from the off-take of the Nahr Şarşar, at a village called Fallūgah, and flowed into the Tigris 15 km below Madain. At the crossroad of this canal and the route to Mecca was located a town called Nahr al-Malik. The road distance from this town to Şarşar was around 11 km (Le Strange 1905, 68). The path of this canal can perhaps be associated with the modern Yūsufiyah canal.

- The Nahr Kutha. Its point of origin on the Euphrates was 15 km below the off-take of the Nahr al-Malik, and its confluence with the Tigris was about 50 km below Madain. Its location may coincide with the Ḥabl İbrāhīm (Le Strange 1905, 69).

All these canals can be located on the most prominent topographical levees in the flood plain under consideration, except for the old Dujail canal. Some of them were probably constructed on existing natural levees. However, one might suspect that these canals at least contributed to the accretion of these levees.

The implementation of such a research project is in fact planned within the framework of a ‘Interuniversity Poles of Attraction Programme — Belgian State, Prime Minister’s Office — Federal Office for Scientific, Technical and Cultural Affairs.’

See also Wilkinson 1990 and above.

Le Strange (1905, 69) places the Nahr 'Isā in the vicinity of the present Nahr Saklawiyah.

The problem of localization of these canals is of course more complex and will be investigated in much greater detail, from different textual viewpoints, within the framework of the above-mentioned research program.

It is a well known phenomenon in the construction of irrigation canals that, downstream from bifurcations, deposition occurs. Since the sum of the sediment transport capacities of two daughter canals is lower than...
Geomorphological Research in the Mesopotamian Flood Plain

Prior to the construction of these canals in a more remote time, the Euphrates in flood, upon entering the flood plain, probably discharged its waters into various anabranching flood channels. Such a dispersal of stream power over different channels causes deposition and the formation of flood levees. These flood channels were probably utilized later as an early method for controlling part of the Euphrates flood and for utilizing the water for irrigation (LEBON 1955, 49). Gradually such flood channels were reinforced by bank protection and canal modification. As such, the topographical levees are probably hybrid in origin but, as already pointed out above, estimations of the relative importance of natural and anthropogenic processes are highly hypothetical.

6.1.3.2. Irrigation Patterns before the Modern Waterworks

LEBON (1955) described the recent irrigation patterns before the onset of modern flood control projects during the 1950s. His descriptions of the main irrigation canals branching from the Euphrates upstream from the Hindiyah barrage is illustrative of the functioning of the pre-modern irrigation canals. A brief description is justified here since its functioning also has a direct consequence on the sedimentation that might occur along these canals.

The Hindiyah barrage was constructed in 1891 in order to maintain the water level in the Sat al-Hillah and was restored by Willcocks in 1925 (LEBON 1955, 52, 53). The canals issuing upstream from this barrage were subdivided into three types. The four canals just upstream from the barrage were perennial canals that assured irrigation the whole year round. The canals further upstream were in semi-perennial use. The water level in these was controlled to a lesser extent by the barrage, and a limited amount of water could be admitted into them in the summer. This allowed more land to be irrigated in this season, while in the winter the high water level permitted its full use. The canals even further upstream were inundation canals. All the water required for the land could usually be admitted into them in winter, but in summer the level was to low (LEBON 1955, 53).

Presently the Euphrates supplies several major channels bringing irrigation water to the flood plain. From north to south the main irrigation canals are the Saklawiyah, Abu Ghraib (subdivided further into the north and south canals), Radhwaniyah, old and new Yusufiyah, Latifiyah, and Iskandariyah canals.

the sediment carrying capacity of the mother canal, these bifurcations are preferential places for deposition. Processes are comparable here: the sediment load of the Euphrates was distributed by way of different canal off-takes. These transverse canals must have been in use for at least more than a half millennium. In 1345 AD, all but the Nahr ʻIsā seem to have silted up (GIBSON 1972, 25). The Nahr ʻIsā was navigable again in 1837 (GIBSON 1972, 25). On the 'Bewsher' map the Nahr Maleha (Nahr al-Malik) still clearly displays its meandering pattern (SELBY, W.B., COLLINGWOOD, W., BEWSHER, J.B., 1885 Surveys of Ancient Babylon and the Surrounding Ruins with Part of the River Tigris and Euphrates ... in 1860 to 1865, London, 6 sheets published in 1885, British Museum).

174 On the left bank these were the Hillah branch and Kifl Canal, and on the right bank the Beni Hassan and Husseiniyah canals.

175 These were all left-bank canals: the Musayyib, Nasiriyah, and Iskandariyah.

176 These include from south to north the Latifiyah, Yusufiyah, Abu Ghraib, and Saklawiyah canals.
6.1.4. General Landform and Landscape Evolution

6.1.4.1. Long- to Medium-term Landform Evolution

Nijss (1987, 5) briefly divided the general geomorphological history of our area into three main events. He distinguished at first a period of deposition of thick fans of coarse sand and gravel all over the area brought into the plain by a Pleistocene braided river pattern. Second there was a period of net erosion and dissection as a result of falling sea-levels and third a new large-scale sedimentation of finer material at the beginning of the Holocene whereby ... the rivers gradually adapted to the new situation by shaping the present alluvial plain. We can refine this picture of river adaptation by that already briefly outlined above: there was a gradual transition from a more anastomosing or multi-channel river pattern towards a single-channel meandering system. This implies that at a certain moment synchronous channels existed that were gradually abandoned due to siltation. Such a general evolution probably occurred at higher rates during the first half of the second millennium BC, although the documentary record indicates that there were still three functioning natural channels in the Sippar region as late as a century after Hammurabi and that this transition to a single-channel meandering system was finally completed by no later than 900 BC. Textual evidence from the time of Hammurabi in particular displays a picture of siltation of watercourses on the one hand and increasing flood danger on the other (see Cole and Gasche this volume, pp. 7-10). This could be explained by the siltation of some of the synchronous branches, thereby increasing the discharge in the fewer remaining active channels. The reasons for such increasing rates of siltation can probably be found upstream in the river system (see again Cole and Gasche this volume, pp. 10-11) and probably did not affect the palaeo-watercourses of the Twin Rivers at the same time. This process of siltation and the gradual vertical accretion of the natural channel beds probably started already during the early (mid)-Holocene period and varied in rate and location. As one might expect, flood plain accretion rates are highly variable in both space and time, being related to local topographic position, the nature (frequency, duration, location) of individual flood events, water and sediment supply, the vegetation cover, and the nature of the river banks.

Indeed, the lower topographical position of the Tigris levee, although it constitutes a broad natural levee in this area, is somewhat surprising. At present, its water discharge,
annual sediment load, and sinuosity are higher than that of the Euphrates. These factors normally favor vertical levee formation, and if, as Adams notes ... the available evidence makes it seem likely that the heaviest net increment, as well as current rate, of deposition occurs not in swamps in the south but at the northern end of the alluvial plain (ADAMS 1981, 10), one may ask why the present Tigris did not build up a higher levee? Factors that might explain its lower position can be found in the structural asymmetry of the geosyncline, whereby the Tigris followed the lowest depressions and built up its natural levee gradually between these confined limits, in the broader levee itself, or in the finer sediment load of the Tigris. Another factor may be the existence of the Nahrawân Canal, already mentioned before (Figure 10). This canal follows a huge topographical levee, east of Baghdad and parallel with the present Tigris. It was perhaps functional for less than a millennium, gradually silted up, and was abandoned around the 12th century AD (LE STRANGE 1905, 59). In extent this topographical levee is comparable with that of the Euphrates, and as such is anomalous. It might seem reasonable to accept that a large amount of the Tigris sediment load was diverted and deposited to form the topographical levee on which the later Nahrawân was constructed. Still other explanations can be found in attributing a relative young age to this reach of the Tigris. Another plausible explanation, suggested by Rowton, can be found in the differences of the sediment load. He argues that deforestation in the Euphrates catchment area occurred long before the deforestation in the Tigris area and that for a long period the Tigris carried much less sediment (ROWTON 1969, 316).

6.1.4.2. Short-term Landscape and Landform Evolution

An estimation of the relative contributions and rates of the two different processes (e.g. natural levee and anthropogenic levee formation) in the final topographical expression is of course essential for the interpretation of the formation of the Mesopotamian landscape. However, in many instances differentiation between the processes is problematic. There are no textural differences among the deposits; faunal remains are the same in the two watercourses; and spoil banks may be interwoven in natural levee deposits, which can be used again later as a higher foundation for a new main irrigation canal. It is the author’s experience that even with a detailed screw-augering transect, without the evidence of

181 The structural asymmetry of the geosyncline is best visible in the bathymetry of the Gulf (BALTZER and PURSER 1990, 177). Since the Mesopotamian Plain is the northward extension of this geosyncline, we might expect a similar configuration for the area discussed here. Since the deeper parts are located near the eastern borders of the flood plain, it must have influenced mainly the flow-constraints of the palaeo-Tigris. This asymmetry could also explain the general trend of Euphrates hydrography towards the Tigris. Note that the area on the west side (and partly on the east side) of the Tigris can be viewed on meso-scale as one big depression: ‘Aqar Qûf depression + depression north of ed-Dîr + Seleucia depression + Jemdet Nasr depression.

182 According to Rowton, deforestation in the catchment area of the Euphrates occurred during the Early Dynastic period and accounted for a marked increase in the amount of sediment load (ROWTON 1967, 263). This deforestation (and the erosion) was a gradual process all through the third and the second millennia BC (ROWTON 1967, 277).
sedimentary structures in a well chosen profile section, interpretation remains difficult. It is only by way of a multi-disciplinary approach, combining textual evidence, geoarchaeological and sedimentological research, available maps and multi-temporal and multi-spectral imagery, etc., that these complex phenomena can be disentangled.

In some cases the predominance of one process over the other is evident. If, for example, the planform is rather straight, deviating from the general topography and with remains of irrigation banks and settlement alignments on the top convexity, we can, even without ground-truth verification, assume the existence of an irrigation canal. This is the case with the 8th century AD Šāṭṭ al-Nīl, which crossed the flood plain in a west-east direction from the Euphrates just north of Babylon towards a point close to the present Tigris (ADAMS 1981, 219, Fig. 47). Surely, the western part of the Šāṭṭ al-Nīl took advantage of a formerly existing topographical (probably a natural) levee, but continued to build an irrigation levee further eastwards, now intersected by the ‘Third River.’

Here we come to the other main problem: the estimation of the rates of topographical levee aggradation. In the case of the Lower Nahrawān, which runs on an enormous topographical levee, we may assume an underlying natural levee system. But we have limited information about the aggradation of this irrigation system when it was functional.

7. The Study Area and Transect Description

7.1. General Geomorphological Settings and Former Geomorphological Research

The study area in which the auger transect is located is arbitrarily delimited by the availability of topographical maps of scale 1/10.000 and satellite images (SPOT panchromatic). It comprises the area between the geographical coordinates of 44° 09' - 44° 20' E and 33° 00' - 33° 10' N (Figure 14).

This area is situated 20 km southwest of Baghdad and is bordered by the present Euphrates and the gypsiferous, gravelly terrace of Iskandariyah on the south. It is situated in that part of the Mesopotamian flood plain where the river courses of the Tigris and the Euphrates are separated by a distance of less than 50 km. This area is therefore important for the understanding of the hydrological and fluvial conditions of the whole Mesopotamian Plain lying to the south. The landscape displays a typical levee/flood basin context of a flood plain.

Central and dominant in the study area and running roughly from west to east is the topographical levee along which Tell ed-Dēr and Abū Habbah (Sippar) are situated. The summit of the levee can be followed by the modern irrigation canals of Yūsufiyah (Figure 14). This levee was recognized as a natural one in the very first geomorphological surveys of this area (PAEPE 1971, 21).

Here it must be stressed that geomorphological research in this region has not yet been detailed enough to allow other than tentative conclusions to be drawn about the ancient
Geomorphological Research in the Mesopotamian Flood Plain

fluviatile system on the basis of these data alone. The following summary of previous research should be read with this in mind.

Based on field observations and aerial photos PAEPE (1971, 23) mapped the filled gullies (abandoned channel fills) in this area and concluded that the channel fills ... parallel to the (present) Euphrates are successive stages of its retreat towards the west. The shifting of the riverbed went along with the steady filling up and subsequent heightening of the riverbed to the level of the Euphrates.... However, for the natural levee between Tell ed-Dër and Abū Ḥabbah, he had the idea that they were former stages of location of the Tigris (PAEPE 1971, 24), and that this north-south flow of the Tigris through Tell ed-Dër and Abū Ḥabbah shifted eastwards as a result of the Euphrates sedimentation and thereby reversing the present topography. He also stated that ... it is sure by now that the Euphrates chased the Tigris out of the Mesopotamian plain as a result of the former's higher sedimentation rate and subsequent heightening. Thus Euphrates floods must have faded out, buried or captured older Tigris channels (PAEPE 1971, 26).

This fluvial system between Tell ed-Dër and Abū Ḥabbah was later the subject of a more detailed augering program by Paepe and Baeteman. They unraveled the existence at certain depths of levels of different flood phases and brought them in relation with the settings of the archaeological sites. They concluded that ... the plain between Tell ed-Dër, Abū Ḥabbah and Mahmūdīyāh is an alluvial deltaic-crevasse area dominated by three central gullies along which the tells are situated (PAEPE and BAETEMAN 1978, 55).

These central gullies are, in the area around Tell ed-Dër and Abū Ḥabbah, associated with three superimposed 'flood systems' and were named: A-system (oldest), B-system, and C-system (PAEPE and BAETEMAN 1978, 39). Based on the pattern of these systems, they concluded that ... the flooding occurred from north to south, which means from Tigris to Euphrates in the present area [region of Tell ed-Dër and Abū Ḥabbah] (PAEPE and BAETEMAN 1978, 45).

The A-system is characterized by lithological units which consist generally of green-gray fine sands, locally outspoken coarse and even gravelly. The top of these units is situated 5 to 7 m below present plain level (=33 m) (PAEPE and BAETEMAN 1978, 39). These units are associated with channel deposits ('A-sands') and are, according to PAEPE and BAETEMAN (1978, 40-41), ... not to be considered as patterns of one single streamgully. It is the ultimate configuration of several superimposed meandering streampaths with crevasse-splay areas as is revealed in the usual lithological complexity of a boring-log.

At Tell ed-Dër this sterile unit is situated below the archaeological layers and is labeled A11 (PAEPE and BAETEMAN 1978, 39). These deposits are associated with the natural levee deposits of a river course between Tell ed-Dër and Abū Ḥabbah (PAEPE et al. 1978, 21). They are relatively dated and are not younger than 4,000 BP (PAEPE and BAETEMAN 1978, 41; PAEPE et al. 1978, 22, and Table 1).

The bottom of these units was not attained, but the minimum thickness was around 1 to 2 m (PAEPE and BAETEMAN 1978, Fig. 1).

One crevasse-splay (flood-plain splay) was identified immediately southeast of Tell ed-Dër and extended more than 4 km in a southeasterly direction (PAEPE and BAETEMAN 1978, 41, and Map of the fluvialite
A central gully belonging to the A-system between Tell ed-Dēr and Abū Ḥabbah was identified and associated with a river course whose "talweg" connected both towns (PAEPE et al. 1978, 21). The bases of Tell ed-Dēr and Abū Ḥabbah were established on these deposits (PAEPE et al. 1978, 21). This central gully in the A-system was interpreted to be the basis of a natural levee and shows a continuous sedimentation series of coarse sands without interruption by any of the later flood systems (PAEPE and BAETEMAN 1978, 44). This natural levee demonstrates a fixed position and a constant vertical accretion during the time span between 5.000 BP and 2.500 BP (PAEPE and BAETEMAN 1978, 44).

The B-system is characterized by green-brown medium sand, the top of which is situated around 30 m (PAEPE and BAETEMAN 1978, 42). Deposits of this system are widespread in the area of Tell ed-Dēr and Abū Ḥabbah in contrast to the more concentrated A-system deposits (PAEPE and BAETEMAN 1978, 42). The lithological units of the B-system are not uniformly composed of sandy material but reveal an alternating pattern of sand and clay layers with numerous small gullies (PAEPE and BAETEMAN 1978, 42). The depositional environmental context of these units, according to the authors, is one of an increased rate of accretion in an open landscape corresponding to a period of intense submergence with short periods of emergence in between (PAEPE and BAETEMAN 1978, 42, 43).

Finally, the investigators identified a C-system consisting of brown to green-brown, medium to fine sand units at a depth of 1 to 2 m below the surface of the highest parts of the plain (PAEPE and BAETEMAN 1978, 43). Again this system displays a more concentrated channel pattern superimposing in many places the pattern of the lower-lying A-system (PAEPE and BAETEMAN 1978, 43). An important period of erosion preceded this system, and after the C-system the crevasse-system disappeared, flood-patterns became reduced in size and continued to bevel up in their own deposits (PAEPE and BAETEMAN 1978, 44).

More research on the historical geography of the Tell ed-Dēr and Abū Ḥabbah region was done by GASCHE and DE MEYER (1980). Based on aerial photo interpretation, they

186 According to PAEPE and BAETEMAN (1978, 44), these channels continued to function from at least the end of the Atlantic until the early Sub-Atlantic. This corresponds roughly with the time-span from the Uruk to the Neo-Babylonian. GASCHE (1988, 43) came to the same conclusion, based on vertical flood plain accretion interpretations.

187 In the augering profiles given by PAEPE and BAETEMAN (1978, Fig. 1), these sandy gullies are displayed as sand-containing lenses ('B-sands') with a local maximum thickness of 3 m.

188 PAEPE and BAETEMAN (1978, 43) describe this general context for all three systems as a pattern of a crevasse-system in a deltaic sedimentation belt. As mentioned before, we prefer to use the term 'deltaic' in a stricter sense.

189 Inferred from the deposits at Tell ed-Dēr associated with the so-called Palaeo-Babylonian floods and coinciding with the building of flood-protection dikes around Abū Ḥabbah and Tell ed-Dēr (PAEPE et al. 1978). This B-system probably continued to exist until about 3.000 BP (PAEPE and BAETEMAN 1978, 43).

190 Inferred from deposits at Tell ed-Dēr, this system is associated with post Neo-Babylonian floods (2.500 BP to 1.650 BP) (PAEPE and BAETEMAN 1978, 44, and PAEPE et al. 1978, 32).
Geomorphological Research in the Mesopotamian Flood Plain

presented a much more detailed picture of the archaeological landscape for the study area, mapping the old irrigation canals, the archaeological sites, and traces of fossil meanders, and bringing them into relation with two natural levee systems, the so-called X and Y levees (GASCHE and DE MEYER 1980, Plan 1). Here, all these relations are clearly expressed better by their 'levee system X' of Tell ed-Der and Abū Habbah (GASCHE and DE MEYER 1980, 10). As was evident from the general pattern of the old irrigation canals along this levee, the direction of flow between these two sites must have been from southwest to northeast, at least during the last stages of its development. Furthermore, GASCHE and DE MEYER (1980, 9, Fig. 4 and 5) demonstrated that the fossil meanders between these two sites that are visible on the aerial photos coincided with the meandering watercourse labeled on the late 19th century AD 'Bewsher' map as the Nahr Malcha (= Nahr al-Malik), already described above. More than 75% of the archaeological sites are located along these two natural levees (X and Y) and, according to GASCHE and DE MEYER (1980, 12), an important percentage of them are from the Parthian-Sasanian or early Islamic period.

Of particular interest is the contribution of BAETEMAN (1980), especially her identification of two of these fossil meanders as point bar deposits, and her cross-sectional description of an old irrigation canal or argub.

She made an auger transect through the fossil meander south of Tell ed-Der, where she could identify a uniform, fining upwards (gravely to silty clay) sandy lens of 5 m thickness and of nearly 300 m width. In the upper part of the section are interbedded lenticular silty clay layers (BAETEMAN 1980, Fig. 2). She interpreted these as point bar deposits of a rather important river. A second fossil meander, east of Tell ed-Der, but now exposed in an open profile section and of similar dimensions, was also identified as a point bar (BAETEMAN 1980, 20).

As mentioned already above, argubs consist of two parallel earthen walls or spoil banks, enclosing a central canal with off-takes near a main (feeding) channel. In the cross-section of one such old irrigation canal, she found the bottom of this former central canal to be situated 3 m under flood plain surface, with the spoil banks lying on top of these flood plain deposits (BAETEMAN 1980, 17).

191 This remains the base map. It is represented as background in Figure 14. The aerial photos dated from the 1970s.

192 This map displays an abandoned meandering watercourse, situated on the summit of the main levee of our study area but still filled with water and connected with irrigation canals upstream. On earlier maps (CHESNEY 1850, map VII), but of the same century, the same traces are mapped but are shown partly as dry watercourses. It is possible that this watercourse was still used sporadically as an inundation or flood canal, partly diverting Euphrates high flood waters into the Tigris. The filling up of this watercourse must have occurred gradually, and it probably became totally inactive during the last century.

193 In comparison with the present point bar deposits of the Twin Rivers, however, such dimensions are rather minor. In view of the existence of the abandoned watercourse on the Bewsher map, some of these deposits must also be interpreted as the latest channel fills.

194 Due to non-natural accumulation, it was impossible to distinguish any sedimentary structures (BAETEMAN 1980, 20).
Fig. 14. Present Topography of the Study Area Showing the Localization of the Auger Transect. Indicated as background are the old irrigation canals and tells as identified by Gasche based on aerial photos of the 1970s. Indicated as well are the modern canals and drains and the fossil meanders. These are well preserved on the top convexity of the natural levee between Tell ed-Dér (57) and Ahbi Habbah (58). See text for further details. Localization of samples for granulometric analyses = AQ PA (see Figure 12) and = C24; = fm ed-Dér point bar deposits (see Figure 17). Numbered sites refer to site survey catalogue numbers of ADAMS 1972.
Such a configuration, with spoil banks that are not interwoven with or partly buried by the vertical accretion activity of the flood plain, suggests that there was no net vertical accretion of the natural levee at all during or after the functioning of this argub system and that this configuration depicts the latest functional phase of the argub. Since some of the off-takes of these old irrigation canals are still clearly situated on the concave side of fossil river meanders (the preferential side for water capture), one might get the impression of a frozen landscape of disused irrigation canals after the (sudden?) abandonment of the main feeder watercourse (canal) on the topographical levee.

Our study area was placed in a broader archaeo-geographical context of the northern part of the Mesopotamian plain by GASCHE (1985). He suggests that this region was irrigated by at least three different branches of the Euphrates during the third and second millennia BC (GASCHE 1985, 583). Here, the other topographical levees, most of which are situated north of the levee X, were interpreted as irrigation levees, and other probable fossil meander traces not associated with topographical levees were mapped.

Extrapolations on vertical flood basin and levee accretions were done by GASCHE (1988, 42) for the natural levee X under consideration. According to him, this levee was

195 The dating of such old irrigation canals forms a terminus post quem of the abandonment of the feeder watercourse.
certainly a net-vertical-accretion natural levee from the end of the 4th millennium BC onwards, but stopped flooding before the 6th century BC. The watercourse on this levee still existed later, but it was not clear to him at the time if its regime was natural or man-controlled (GASCHE 1988, 43). Cole and Gasche now suggest that its regime was probably no longer natural after c. 900 BC (see p. 32, this volume).

The present fieldwork was planned to provide a general flood basin and levee transect in order to gain some insight into the evolution of the flood plain in general and the ancient natural levee in particular.

7. 2. Definitions and Model Morphology for Meandering and Anastomosing River Systems in a Flood Plain Context

7. 2.1. Definitions

River system and flood plain morphology is well understood and the main concepts were already briefly summarized above at meso-scale. Many excellent textbooks are available, along with hydrographic studies dealing with the hydraulics and morphometric aspects of river systems at micro-scale, as well as with their sedimentology. Most of these employ an idealized, abstract model of the different river morphological systems. The models we have employed are illustrated below in Figures 15 and 16. The understanding of the field data and the augering interpretation is projected on this idealized model. To facilitate communication we found it relevant to present this model morphology of a meandering river at micro-scale here, as well as some general definitions which we will use furtheron in this article.

The flow regime of a river is here understood as a range of hydrological or water energies characterized by particular flow conditions which transport sediment in a specific way and that results in distinctive sedimentary structures and sequences characteristic of the flow regime.

Sedimentary structures are the patterns formed by sediments as they are deposited. They include ripples, cross beds, laminations, load casts, etc., and are associated with the flow regime concept. Sedimentary structures usually refer to the internal structures of a depositional unit and are associated with typical bed forms (structures forming on the floor of a flow regime). Such structures can only be interpreted adequately in profile sections. Augering with a screw-auger of course does not permit a description of sedimentary structures because of the disturbance. It should be repeated here that the lack of profile section descriptions is a big handicap for interpreting sedimentary environments.

Sedimentary sequences are vertical successions of sedimentary structures representing changing flow regime conditions through time. Well known sequences are the L-bar/T-bar

196 Therefore, the process of natural levee accretion and flood basin accretion must have stopped too.
sequences of braided rivers and the point bar sequences of meandering rivers (FICHTER 1993, 62).

Coarsening Upward Sequence (CUS) is a sequence of strata in which overall grain size increases up-section. This is opposite to a Fining-Upward Sequence (FUS), which shows an overall decrease in grain size up-section. A FUS (and CUS) usually refers to an overall upward decrease (or increase in the case of CUS) in grain size through many depositional units or events and is associated with the sorting power of a characteristic flow regime. The term 'graded bedding' refers to a type of bedding, usually one depositional unit, in which grain size changes gradually and progressively from bottom to top. Grading may be normal when grain size decreases upward, or reversed when grain size increases upward (FICHTER 1993, 218).

Crossbedding is the internal structure of a layer of sediment which was deposited at an angle to the horizon, or to the primary surface of sedimentation.
7.2.2. Model Morphology and Processes

Fine clastic sediments are usually associated with a low energy flow regime, coarse clastic sediments with a high energy flow regime. A stable flow regime usually results in good sorting of the sediments, whereas an unstable flow regime usually gives poorly sorted sediments.\(^{198}\) Abrupt textural changes might give an indication of an erosional base.

Meandering rivers show a more organized distribution of channel processes and sedimentation and a clearer separation of channel and overbank environments than do braided or anastomosing rivers. Although anastomosing rivers can develop levees as well, their channel patterns are generally more stable and less meandering. Therefore, meandering rivers display a meander belt with a higher dynamic in their erosional/depositional behavior (Figures 2, 6 and 7).

Characteristic of meandering rivers are the point bar deposits (Figure 16). These are sediment bodies enclosed by a meander loop. These bodies can be several meters thick.

\(^{198}\) Sorting of the sand fractions or higher can be visually estimated in an auger core.
Point bars are deposited on the channel lag deposits of the meandering river, the texture of which ranges from medium-to-fine sand to silt. Typical sedimentary structures of point bars are climbing ripples on top and small trough cross beds below (Fichter 1993, 61).

Most scholars consider the helicoidal circulation in the meander bends to be the most dominant factor in the sedimentation processes of these point bars. These helicoidal flows show a surface component toward the outer bank and a bottom component toward the inner bank. The maximum velocities occur near the outer bank. The inner convex bank is the site of deposition, and the outer concave bank is the site of erosion (Reading 1986, 32).

Thus the helicoidal flow moves toward the outer bank near the stream surface and toward the inner bank at the bottom. This helicoidal flow is responsible for the fining-upward sequence and the upward increasing sorting of the grains in the point bar units. Both granulometric parameters are diagnostic of point bar sediments.

The upper surfaces of point bars show a series of roughly concentric ridges and swales representing successive scroll bar accretions. The channel as a whole migrates transversely to the flow, depositing a unit of sediment by lateral accretion. The point bar deposits migrate downstream.

Deposition on point bars is the major process of sedimentation in meandering river channels. In ancient records point bar deposits and flood-plain splays constituted the major part of the fluviatile sequence.

Typical for point bar deposits are their vertical, fining-upward sequence and upward sorting of the sediments. The basal contact of the channel bed is sharp with lag gravels. An idealized point bar sequence shows a fining-upward texture going from coarse-grained, massive, and crossbedded basal beds to finer grained, horizontally laminated beds. Figure 16, adapted from Pettijohn et al. (1987, 358), illustrates these general characteristics.

Shape, size, and sorting of the river sediments depend on the flow regime. In large rivers point bars are composed of scroll-shaped ridges (scroll bars) alternating with depressions (swales). Swales are filled with fine-grained muddy sediments; even marshes may develop in them. The point bar deposits are built up by the coarsest suspension load and bed load sediments available in the stream. The coarse sediments of the point bar are deposited on the very coarse sediments of the channel lag.

The diagnostic characteristic of granulometric analyses of point bar sediments is that grain size decreases upward in a point bar sequence. The individual units of a point bar sequence are discontinuous and lenticular in shape. Point bar deposits may show accumulation of drifted plant material, freshwater mollusks, mud pebbles, etc.

A second diagnostic characteristic is the upward sorting of the sediments in the point bar. Sorting in general improves upward, but in some cases a decrease in sorting is apparent (Reading 1986, 36). Sand is moderately to well sorted.

We can conclude that the upward decrease in grain size and the improvement of sorting are general characteristics of point bar deposits. Granulometric analysis of samples...
taken from Auger C 24 (see Figure 14 for localization) illustrates these depositional characteristics. The probability graphs are illustrated in Figure 17.

Fig. 17. Probability Graphs of Sand Fraction of Sample C24 (Point Bar Deposit) at Depths of 450, 550 and 590 cm Showing the Upward Sorting and Decrease in Grain Size. Sample fm ed-Dér, taken at depth 120m in the fossil meander east of Tell ed-Dér. For localization of samples see Figure 14. C24:450 is very well sorted, very fine sand; C24:550 is moderately sorted, fine sand and C24:590 is poorly sorted, fine to medium sand.

7.3. The Field Work

7.3.1. The Auger Transect

During the field work a NNE-SSW transect of approximately 25 km was followed perpendicular to an old river levee of the Euphrates. The general location of the transect is shown in Figure 14. The transect starts at the present river bank of the Euphrates, cuts the ancient river levee, and ends in the flood basin depression north of the Baghdad-Baṣra highway.

In fact the auger transect cuts three levee systems, the so-called levees X and Y and the present levee of the Euphrates. See e.g. GASCHE and DE MEYER 1980, Plan 1, GASCHE 1985, 581, or GASCHE 1988, 46, Fig. 2 for the geographical settings of the levee systems X and Y. Here the arbitrarily labeled old river levee, corresponds with the levee X, along which the sites Abū Ḥabbah and Tell ed-Dér are situated. As will be discussed below, this old river levee is more pronounced in the auger transect than is the levee Y. It is thought that levee X is associated with the oldest branch of the Euphrates in its westward avulsive shift towards the Western Plateau. However, the chronology of these levees remains unresolved since there are no radiometric data available (GASCHE 1988, 41). Furthermore, river channels may reoccupy old abandoned channels (BROWN 1997, 69).
Due to the lack of adequate maps in the field, it was difficult to locate the bore-holes exactly. However, with the aid of a SPOT panchromatic satellite image (spatial resolution 10 x 10 m) in combination with the landscape description, where irrigation and drainage canals provide excellent orientation points, it was possible to remap the augering points within an acceptable margin of error.

The exact location of the auger transect was selected on the basis of the accessibility and need to find as many undisturbed landscape units as possible. Other constraints were, of course, the perpendicular orientation to the presumed river levee and the need to make as continuous a transect as possible.

Due to the lack of topographical reference points and the long distance, it was not possible to level all the augering points absolutely. However, some sets of bore-holes could be leveled relative to one another. These relatively leveled augerings have been indicated with the same capital letter in the augering reference number or connected by a solid line in the profile figures. The height differences between non-leveled augering points are estimated only approximately on topographical one-meter contour maps, and are within a margin of error of less than a meter. No leveling was done at all for the transect on the present levee.

The augering was carried out with a screw-type (dutch) auger. The mean augering depth was about 5 m. In the field a general description of the augering spot was given and most of the following major characteristics of the different augering cores were described: texture (according to USDA; the sand fraction was estimated with a sand lineal) and (eventually) sorting class, soil matrix color (Munsell revised standard soil color charts) and color mottling, consistency (rupture resistance, stickiness, plasticity), gley evidence (redoximorphic features), depth of groundwater table, presence of fauna or flora relicts, evidence of gypsum or lime concentrations, evidence of salt, and abrupt textural changes.

The study area is of course a cultural landscape, and as mentioned above, the differentiation between natural and anthropogenic processes is extremely difficult to make. To give only one example, the Nahr al-Malik, probably situated on the old river levee, was cleared out several times: Julian, following the example of his predecessor Trajan, caused the Nahr Malik to be cleared out, and the vessels were immediately floated into the Tigris (CHESNEY 1850, 439). It is evident that a multi-disciplinary retrogressive landscape reconstruction is the most efficient approach to disentangle the making of this complex landscape.

Color is perhaps the most obvious characteristic of a sediment but also the most difficult to interpret (FICHTER 1993, 216). However, in general the following interpretive criteria were followed in relation to the amount of oxygen present during deposition: black for deep and/or stagnant water (incl. decayed organic matter); gray/green (ferrous iron) for shallow and/or circulating water; brown/red/yellow (ferric iron) for terrestrial deposition.

Usually only simply described by their status (fragments, condition), relative amount, and class as Gastropoda or Pelecypoda (Bivalvia). No samples were taken for more detailed determination during this reconnaissance survey.

Although one can expect a general cut-and-fill fluvial history in flood plains, the transect did not reveal clear evidence of erosional boundaries like channel scours. Therefore the interpretation of abrupt textural changes was left open. It is the author’s experience (or lack thereof) that, in the absence of profile sections, screw augerings have limited value for interpreting erosional features.
All these descriptive criteria, as well as the relative level of the augerings, were taken into account in defining and interpreting the sedimentary units, and in the inter-auger correlations and associations. By ‘inter-augering correlations’ we mean the grouping of similar deposits from the same sedimentary environments; by ‘associations’ we mean the grouping of deposits which differ from one another but which belong to the same sedimentary environment.

The auger profiles were plotted and related to one another. Where it was not possible to correlate adjoining auger spots, some additional augerings in between were carried out. These additional augerings were not described to the same extent.

In total some 100 augerings were carried out for the transect. Only 45 augerings, which we believe are characteristic, are represented here in the plots, and only the textural changes are indicated.

7.3.2. General Description of the Auger Transect

In general the following landform units along the auger transect were used for dividing up the transect. The three subdivisions will be described below in more detail:

- The transect on the flood basin (Figure 18).
- The transect on the old river levee (Figure 19).
- The transect on the present levee (Figure 20).

7.3.2.1. Description of the Transect on the Flood Basin

Figure 18 shows a general overview of the textural changes of the auger descriptions for the flood basin transect.

The topography is significant, and the levee in the southern part of this transect is well pronounced. The transect descends toward the north into the flood basin depression. The height ranges from 34 m south of the Yuṣufiyah canal to 29 m north of the highway. In general the texture gradually becomes heavier as one moves to the north as one might expected in a flood basin context, although the high textural variability in the deeper parts of some of the auger descriptions makes the inter-auger correlations and associations difficult to interpret. In this transect not a single potsherd or brick fragment was found in the deeper sections of the auger.
Notwithstanding this, the following main inter-auger correlations could be differentiated:

1) Heavy Clay Complex of the Flood Basin Depression

This heavy clay complex is situated in the northern part of the profile and forms the lowest area of the dry, saline depression. This depression shows evidence of a long period of inundation and is covered by flood or fine textured irrigation deposits (Augerings 89/40, 38, 37).

General morphological description:
- saline surface layer (hygroscopic salts)
- grayish, yellow brown (10 YR 4/2 moist) and dull yellow orange (10 YR 6/3 dry) clay top layer with a mean depth of 1.60 m; hard; very few fine roots; some fine, faint mottling;
- brownish black (10 YR 3/2 moist) silty clay layer with a mean thickness of 25 cm; hard; few organic materials, few original plant forms recognizable to naked eye, organic material very dispersed; former surface horizon.
- olive (5 Y 5/4 moist) sandy loam thin layer; slightly sticky, plastic; prominent gley layer (main thickness of 5 cm).
- olive (5 Y 5/4 moist) reduced clay layer, minimum thickness 1.50 m; sticky, very plastic; few shells; max. depth of augering: 3.00 m.

2) Lenticular Sandy Body

North of Ḥabl as-Ṣaḥr a lenticular greenish, sandy deposit could be differentiated (Augerings 89/21,20). This body is situated at a mean depth of 3.5 m, has a minimum thickness of less than 1 m, and its horizontal extensions could be traced between augerings at a maximum distance of less than 200 m. Interpretation of the deposits is highly hypothetical. It is probably either an old minor channel branch or deposits of flood-plain splays. Auger 89/20 is clearly deflecting from the expected flood basin context since it contains a poorly sorted, gravelly sand layer. Its interpretation is open, but it can be viewed as reworked terrace material.

Our description is perhaps biased and general, as expected flood basin augerings are underrepresented in the transect representation. However, our attention was focused on the reconstruction of the palaeo-fluvialite patterns and associated channel deposits. Description and interpretation should be separated here. However, since correlation always includes a kind of interpretation, it was thought necessary to include here some interpretations to facilitate communication. The reader can easily make the distinction.

For a detailed description, location, and interpretation of the Ḥabl as-Ṣaḥr (Nebuchadnezzar II's cross-country wall north of the natural levee), see BLACK et al. 1987. For its significance in the general morphological flood plain context, see GASCHÈ 1988.
Fig. 18. Plot of the Flood Basin Auger Transect, Showing the Position of the Flood Basin Depression Deposits (Auger 89/40, 38, 37), the Lenticular Sandy Deposits (Auger 89/18), and the Flood Basin Deposits Complex A (Auger 89/35, 6, 8, 7). Also indicated is the organic layer on the top of the palaeo-surface. For localization see Figure 14.

Fig. 19. Plot of the Old River Levee Transect, Showing the Sandy Channel Deposits Complex A (Auger A 21, B 22, 23, C 24) and the Flood Basin Deposits Complex A.
Geomorphological Research in the Mesopotamian Flood Plain

3) Lenticular Sandy to Loamy Sandy Body

South of Ḥabl aş-Ṣaḥr a lenticular sandy to loamy-sandy deposit \(^{206}\) could be differentiated (Augerings A89/18,17). This body is situated at a mean depth of 2 m, has a minimum thickness \(^{207}\) of more than 2 m, and its horizontal extensions could be traced between augerings at a distance of less than 800 m. Few undetermined shell fragments are present in this better sorted unit. Interpretation of the deposits is highly hypothetical. It is probably either an old channel branch or deposits of flood plain splay. Auger A89/17 is clearly deflecting from the expected flood basin context and may be interpreted as bank deposits.

4) Flood Basin Deposits Complex A

This body represents the oldest flood basin deposits and is probably the substratum into which the old river scoured the channel. The body was recognizable along both sides of the old river levee (Figure 19). The thickness is at least 2 m.

General morphological description: olive brown (2.5 Y 4/3 moist) heavy clay to silty clay layer of unknown thickness at a mean height of 28.5 m; sticky, plastic; abundant shells and shell fragments of gastropoda and bivalves (unio sps.).

5) Palaeo-Surface

Perhaps the most interesting and spectacular finding of the auger transect was the discovery of a sharply contrasted clayey layer, relatively rich \(^{208}\) in organic material at regular depth north of the Yusufiyah canal. This layer is usually more than 10 cm thick. Vegetational remains in Mesopotamian flood plain sublayers are generally rare. Their status was partly well preserved, partly dispersed. This organic layer is arbitrarily called a palaeo-surface and could be followed as a reference plane at some distance. It is interpreted here as a synchronous boundary, gently sloping southwards. The term ‘surface’ is here interpreted as a more or less horizontal plane once at the surface, where inundations have occurred over a long period. This explains the reduced condition of the deposits and the partly good and partly dispersed preservation of the organic material, since the access of oxygen was probably prevented by a shallow water layer. The relatively good preservation of the organic material can probably also be attributed to higher sedimentation rates. The palaeo-surface is probably associated with the former backswamps of the old river. It is the only subsurface-unit in the transect that revealed evidence of organic remains.

\(^{206}\) It is uncertain if this unit can be correlated with the thick sandy layer at two meters depth close to tell HB 5 (Nüs, 1987, 5).

\(^{207}\) Lower boundary could not be determined due to slumping of the bore-holes.

\(^{208}\) Roughly estimated at 15%.
7.3.2.2. Description of the Transect on the Old River Levee

The levee is topographically well pronounced and reaches its top convexity at the present location of the new irrigation canal.

In general the texture ranges from loamy sand to clay loam at the top of the levee. It gradually becomes heavier in both directions and coarser in depth. Figure 19 illustrates the textural changes of this transect. On the shoulders of this levee, the soil is highly saline.

We could differentiate the following units:

1) Channel Deposits Complex A

These deposits are green sandy to coarse sandy sediments deposited in the river channel itself as channel beds or point bar deposits. General description of the channel bed deposits are medium to fine sand with a greenish 5Y 6/4 (wet) color. Very few shells were found. The lowest levels of these deposits were never reached due to the slumping of the auger holes. They started at a depth of 31.5 m and could be followed for over 1.5 km. The sandy deposits become coarser toward the south, and granulometric analysis indicates that the texture within one augering hole shows a fining-upward sequence and better sorting (Figure 17). These channel deposits are most probably old point bar deposits with a lateral shifting of the channel bed deposits toward the north. As such these deposits represent natural river channel conditions.

2) Flood Basin Deposits Complex A, South of New Irrigation Canal

These heavy clay deposits were found on both sides of the channel bed deposits complex A. They occur at a regular depth of 28.5 m. In Figure 19 these deposits probably also form the base of the palaeo-surface.

General description:

heavy clay to silty clay (2.5 YR 5/2 wet) ; unknown thickness ; very sticky ; common, fine, distinct mottling ; common, fine, distinct gypsum crystals ; few, abundant fine shell fragments.

These deposits are associated with the oldest flood basin deposits. Central are the channel deposits indicating the old river channel beds and point bar deposits (Augers 21 to 24). The width of these channel beds is about 1500 m. This is not a width of the same order as that of the present talweg of the Euphrates but it is on the same order of magnitude for point bar deposits. We can conclude that the location of the auger transect is not perpendicular to the stream line, or, most probably, that we have been augering in a large point bar deposit or meander belt of the old river.
Fig. 20. Plot of the Present Levee Transect Showing the Present Euphrates and the Present Levee Deposits.
7.3.2.3. Description of the Transect on the Present River Levee

The transect of the present levee is illustrated in Figure 20. Here inter-auger correlations are very difficult to make due to the high textural variability of the sediments. This can be explained by a very active sedimentation environment. Generally this levee consists of silty loamy to clay loamy texture with lenticular deposits of heavy clay (Augers 40, 41 and 42). Topographically this present levee is situated at a slightly higher altitude than the old river levee. Morphologically the latter shows major dimensions and is better expressed in the augerings.

7.4. General Interpretation of the Transect (Fluvial Stratigraphy)

The general flood basin/old-levee/present-levee flood plain context, as indicated in the subdivision of the auger transect, is well expressed in both the general superficial and subsurface textural changes in the horizontal direction of the transect

The Flood Basin Transect

The flood basin transect can, generally speaking, be further subdivided in a flood basin depression unit, north of Ḥabl aš-Šāḥr. The top two meters of this unit consist mainly of clay and heavy clay deposits.

The area north of the modern highway is at present an uncultivated saline depression. However on DISP of October 1965, this area was under cultivation and fed by secondary irrigation canals that took their water mainly from the Yūsufiyah Canal. In this area, two superimposed, clayey to heavy clayey sedimentary units can be differentiated with certainty, probably separated by a buried soil at a mean altitude of 27.5 m. The lowest unit probably consists of flood basin depression fillings, whereas the upper unit is mainly composed of irrigation sediments. This area is situated only 10 km south of the present Tigris meander belt. Presumably the flood basin depression fillings here are mixed flood sediments of both rivers. From the general pattern of the old irrigation canals, we can assume that most irrigation sediments are brought in by irrigation canals located on the north-facing slope of the old river levee.

The area between the modern highway and Ḥabl aš-Šāḥr exhibits in general clayey upper sediments, but not as uniform as the flood basin depression. This textural variability is more outspoken here in the deeper parts of the transect. The appearance of sandy lenses north of Ḥabl aš-Šāḥr below a mean altitude of 27.5 m, and sandy to even gravelly-sandy units at an altitude of 28.5 m, suggest a more complex depositional history than that expected during gradual vertical accretion in a low energy flood basin context. They can be

209 Note that this area is indicated on the ‘Bewsher’ map as a swampy area, covered with bivalve shells.
210 Declassified Intelligence Satellite Photos.
Geomorphological Research in the Mesopotamian Flood Plain

interpreted as buried sediments, deposited in higher flow energy environments. Based on the poor sorting of the sand, we can exclude an eolian origin.211

With the presently available data, we will interpret these sandy lenses as deposits of former minor watercourses.212 The sediments in the upper sections of the transect in this area are probably irrigation sediments.

South of Ḥabl as-Šaḥr another sandy to loamy sandy unit can be distinguished at a mean depth of 3 m (approx. 28.5 m altitude). This unit is finer in texture than the above-mentioned lenticular body north of Ḥabl as-Šaḥr, but it is more pronounced in its horizontal dimensions. Again, with the presently available data, we will interpret this sandy lens as deposits of former watercourses but associated with a lower energy flow regime.213 The upper units in this area are interpreted as later, high flood basin deposits.

The upper sediments, north of the present Yusufiyah Canal and situated on the higher north-facing slope of the old river levee, contains more silty material and reflects the vertical accretion of overbank deposits of the old river levee. The organic layer is interpreted as a synchronous boundary (approximately at mean altitude of 28 m) and the substratum on which the overbank sediments were deposited. Beneath this layer older flood basin deposits are differentiated.

The Old River Levee Transect

The new irrigation canal of Yusufiyah is situated on the top convexity of this old river levee of the Euphrates. The sediment units here can be interpreted as the vertical accretion of levee formation. The upper meters of this levee are probably the result of an irrigation levee formation. The texture becomes coarser with increasing depth. The lower boundary of the sandy channel deposits could not be reached due to slumping of the bore-holes. The sandy unit below an altitude of 31 m is interpreted as meander belt deposits of a natural channel and could be followed for over a distance of nearly 1.5 km. The deepest sandy layers in Auger C24 are interpreted as typical point bar deposits (Figure 17).

The coarser texture of channel deposits A may indicate a higher discharge and river competence than at present. The dimensions of the point bar deposits may indicate as well higher meander amplitudes. These channel deposits are interpreted as channel bed and point bar deposits of a now abandoned river or branch of the former Euphrates.

The upper sediments on the south-facing slope of the old river levee are interpreted as a vertical accretion of overbank deposits. The textural variability is high, and locally sandier layers can be interpreted as flood-plain splays. There is a gradual transition from these

211 Throughout the whole auger transect, no eolian deposits were differentiated.

212 These could be local flood gullies, flood-plain splays, channels, or buried irrigation canals. It is not clear if the gravelly sandy lens, as represented in Auger 89/20, represents remains of buried reworked terrace material.

213 This interpretation is based only on the better sorting and presence of shell fragments.
overbank deposits towards the high flood basin area of Tell al-Ḥargāwī. In the vicinity of this important tell, sandy layers could be differentiated at a mean altitude of 31 m. These deposits are interpreted here as buried channel deposits. The base of this tell could be determined to be at around 30 m, which perhaps suggests a much older occupation than is presently thought.

The Present Levee Transect

South of Tell al-Ḥargāwī, the topography expresses the vertical accretion of the levee of the present Euphrates. It was thought that this transect would reveal channel deposits of a former branch of the Euphrates, flowing north of the terrace of Iskandariyah. A greenish, well-sorted, fine sandy layer of minimum 200 m width that is represented in Auger 90/37 at a mean altitude of 32.5 m may be interpreted as such. However, they are not as well pronounced as in the old river transect.

In general the auger transect displays an extreme variability of textural changes, and it was impossible to make any correlations in the fluvial stratigraphy. Multi-spectral satellite imagery clearly shows different abandoned channel beds here, reflecting different stages of meander development. It certainly represents an area of high fluvial activity of the Euphrates, since its meander belt abuts against the desert area of the Western Plateau and the fluvial erosion terrace of Iskandariyah.

7.5. Conclusions and General Working Hypothesis

Taking into account the limitations of an auger transect already outlined above, interpretations of the fluvial stratigraphy, and reconstructions of the sedimentary environmental and palaeo-flood plain based on the transect are hypothetical.

However, we believe that following general conclusions are possible.

The occurrence of sandy lenses and their topographical position in the present flood basin context indicate a multi-channel fluvial environment or anastomosing channel pattern. After the early-middle Holocene, this anastomosing pattern changed gradually towards a meandering pattern with a well pronounced meander belt formation of the old river.

The main cause for such a change in pattern may be found in the net aggradation of the fluvial system in this area, which in turn may be possibly due to the combined effect of downstream sea-level rise, upstream increase in sediment supply, and decreasing water discharge. We can posit, based on the combination of our data, the archaeological

214 Note that this area is indicated on the ‘Bewsher’ map as a swampy (Haur) area.
215 Unidentified pottery fragments were found in bore-holes in layers 3.5 to 4 m below plain level. This coincides approximately with 30 m altitude. It should be stressed that no leveling nor systematic augerings were done here. We believe however that the channel deposits in the vicinity of the tell can perhaps be correlated with its founding.
216 Aggradation is also favored by greater seasonality of the discharge.
Geomorphological Research in the Mesopotamian Flood Plain

evidence, and the documentary record (see Cole and Gasche this volume), that this transition was not completed until sometime between the late Old Babylonian period (at which time three natural river courses seem to have still been functioning in the Sippar region) and c. 900 BC (by which time the main flow in the Euphrates system in this area had shifted westwards to the Araḫtu/Purattu line through Babylon).

In the case of the old river levee, the channel deposits complex A represent deposits of a natural meander belt formation of the former Euphrates river. As indicated in the auger transect, the river channel deposits are very broad. This gives the impression of having augered into a huge meander with point bar deposits that were building up by lateral accretion toward the north. Granulometric analysis confirms this interpretation. The overlying deposits may be interpreted as irrigation levee deposits.

The channel sedimentation processes of the old river were responsible both for the building up of the point bar deposits and the lateral movement of the channel towards the north. We correlate the latest channel fill deposits with the irrigation levee sediments found in Auger B22.

On the left bank of the old river a well preserved organic layer could be interpreted as a palæo-surface at around 28 m. The occurrence of the palæo-surface indicates a stable period in the building up of the old river levee. A reducing environment, probably a back swamp of the levee, along the north side of the river channel, gives evidence of a long period of inundation. The flood basin deposits complex A is interpreted as the substratum into which the old river scoured its course. The loamy deposits which cover the palæo-surface are interpreted as bank deposits of the old river system.

The topography of the palæo-surface is significant. Its level increases toward the north, giving it the appearance of a lower lying depression in the south, where the old river channel bed deposits occurred. The palæo-surface is absent south of the canal of Yūsuṭiyah. It is not clear if this absence is due to the westward shifting of the old river toward the present Euphrates course or is due to erosion of later meander formation.

Due to the high textural variability on the present levee of the Euphrates it was difficult to separate the different sedimentological units. It certainly reflects a high intensity of fluvio-morphological processes which can be attributed to the natural flooding and shifting of the branch toward the present course. On this basis alone we can neither confirm nor deny the existence of a natural levee Y in this area. However, according to Cole and Gasche (this volume, p. 32), we know from the textual record that this was the approximate location of the main bed of the Euphrates by at least c. 900 BC, because the Assyrian king Tukulti-Ninurta II had to travel westward from Sippar for some distance before reaching this

217 These are 1) the Irnina, 2) a channel that Cole and Gasche call the ‘Main Branch of the Purattum’ (= levee X), and 3) one they call the ‘Kish Branch of the Purattum’ (later the ‘Upper Araḫtu’), for which see, e.g., their Map 8 in this volume.

218 Without any evidence of another functioning natural channel at this time (see Cole and Gasche this volume, p. 32).
river, which was now called both Purattu and Araḫtu and was the main river through the capital, Babylon, downstream.²⁹

The two most important archaeological sites of this study area, Tell ed-Dër and Abū Ḥabbah, are both located on the same old river levee. Abū Ḥabbah, with its base at 28.5 m, was founded around 3.300 B.C., while Tell ed-Dër, with its base at 29.5 m, was founded approximately 1.000 years later (GASCHE 1988, 42). Probably the foundation of these two sites must be situated in an anastomosing river environment with stable, vegetation-covered river banks.

In order to differentiate the main morphological and sedimentological units of the old river system, a detailed augering program was necessary. It gave the opportunity to identify both an old river course and a model of the river system of an old branch of the Euphrates. If similar conditions can be found at other spots, this model can be extrapolated.

8. REFERENCES *

²⁹ See Cole and Gasche this volume, p. 32.
* The abbreviations used here are those recommended in Northern Akkad Project Reports 8 (1993), 49-65.
Geomorphological Research in the Mesopotamian Flood Plain

GASCHÉ, H., PAEPE, R., 1978: «The Surrounding Wall of Abū Ḥabbah (Sippar) in Relation to that of Tell ed-Dēr and to the Regional Fluviatile System», TD 2, 37-52.

GIBSON, McG., 1972: The City and Area of Kish, Coconut Grove.

Geomorphological Research in the Mesopotamian Flood Plain

LE STRANGE, G., 1900 [1924]: Baghdad during the Abbasid Caliphate, London.
SANLAVILLE, P., 1992: « Changements climatiques dans la péninsule arabique durant le Pléistocène Supérieur et l’Holocène », Paléorient 18/1, 5-26
MESOPOTAMIAN HISTORY AND ENVIRONMENT
Editors: L. DE MEYER and H. GASCHE
SERIES I: NORTHERN AKKAD PROJECT REPORTS (NAPR)
(Paper Edition)

SERIES II: MEMOIRS (MHEM)
(Hard Bound and Paper Editions)

SERIES III: CUNEIFORM TEXTS (MHET)
(Hard Bound and Paper Editions)

SERIES IV: OCCASIONAL PUBLICATIONS (MHE OP)
(Hard Bound [Vol. 1] and Paper Editions)

